Skip to main content

Statocysts and Statocyst Control of Motor Pathways in Crayfish and Crabs

  • Conference paper
Crustacean Experimental Systems in Neurobiology

Abstract

Statocysts are the organs of balance or equilibrium in crustacea. They have many structural features analogous with balance organs in vertebrate and Hensen (1863) considered them to have a hearing role and called them otocysts. Their function was first elucidated in crustacea with Delage (1887) showing that elimination of otocysts in Mysis and several other decapods caused “desorientation locomotrice” Kreidl's iron filings experiment showed the equilibrium role more convincingly (Kreidl 1893). He introduced iron filings into the otocyst ofPalaemonetesin place of the normal sand grains during the moult (Prentiss 1901; Kinzig 1919; Panning 1924) and found he could influence the position of the prawn in space, with a magnet. He concluded that the otocyst had an equilibrium function and renamed it statocyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alverdes F (1926) Stato- Photo-und Tangoreaktionen bei zwei Garnelenarten. Z Vergl Physiol 4: 699–765

    Article  Google Scholar 

  • Barnes WJP, Nalbach HO (1993) Eye movements in freely moving crabs: their sensory basis and possible role in flow-field analysis. Comp Biochem Physiol 104A: 675–693

    Article  Google Scholar 

  • Begbie KM (1992) Anatomy and Physiology of the statocyst of the small swimming crabMacropipus depurator.Honours Thesis, Zoology Department, Aberdeen University, Aberdeen

    Google Scholar 

  • Blaxter JHS (1978) Baroreception. In: Ali MA (ed) Sensory ecology. Plenum Press, New York

    Google Scholar 

  • Breithaupt T, Tautz J (1988) Vibration sensitivity of the crayfish statocyst. Naturwissenschaften 75: 310–312

    Article  Google Scholar 

  • Campbell EA (1982) Neurophysiology of a statocyst equilibrium reflex in the crabCarcinus maenas(L.) PhD Thesis, Aberdeen University, Aberdeen

    Google Scholar 

  • Cate HS, Roye DB (1997) Ultrastructure and physiology of the outer row statolith sensilla of the blue crabCallinectes sapidus.J Crustacean Biol 17(3): 398–411

    Article  Google Scholar 

  • Cohen MJ (1955) The function of receptors in the statocyst of the lobsterHomarus americanus.J Physiol 130: 9–34

    PubMed  CAS  Google Scholar 

  • Cohen MJ (1960) The response patterns of single receptors in the crustacean statocyst. Proc R Soc B 152: 30–49

    Article  CAS  Google Scholar 

  • Cohen MJ, Dijkgraaf S (1961) In: Waterman TH (ed) The physiology of crustacea, vol II. Academic Press, London, pp65–108

    Google Scholar 

  • Cruickshank SF, Fraser PJ, Macdonald AG, Schraner MP (1997) Tidal simulation during long term recording from neurones in the crabCarcinus maenas(L.). Proc R Inst Navig KIN 97: 39.1–39.7

    Google Scholar 

  • Davis WJ (1968) Lobster righting responses and their neuroal control. Proc Roy Soc Lond Ser B 70: 435–456

    Article  Google Scholar 

  • Delage Y (1887) Sur une function nouvelle des otocysts comme organes d'orientation locomotrice. Arch Zool Exp Gen 5: 1–26

    Google Scholar 

  • Enright JT (1963) Estimates of the compressibility of some marine crustacea. Linmol Oceanogr 8: 382–387

    Article  Google Scholar 

  • Findlay R (1985) Anatomy and physiology of the crab balancing organ. PhD Thesis, Aberdeen University, Aberdeen

    Google Scholar 

  • Fraser PJ (1974a) interneurones in crab connectives [(Carcinus maenas (L.)]: giant fibres. J Exp Biol 61: 593–613

    PubMed  CAS  Google Scholar 

  • Fraser PJ (1974b) Interneurones in crab connectives[(Carcinus maenas(L.)]: directional statocyst fibres, J Exp Biol 61: 615–628

    PubMed  CAS  Google Scholar 

  • Fraser PJ (1975a) Free hook hair and thread hair input to fibre 5 in the mud crabScylla serrataduring antennule rotation. J Comp Physiol 103: 291–313

    Article  Google Scholar 

  • Fraser PJ (1975b) Three classes of input to a semicircular canal interneuron in the crabScylla serrataand a possible output. J Comp Physiol 104: 261–271

    Article  Google Scholar 

  • Fraser PJ (1977) How morphology of semicircular canals affects transduction, as shown by response characteristics of statocyst interneurons in the crabCarcinus maenas(L.). J Comp Physiol 115: 135–145

    Article  Google Scholar 

  • Fraser PJ (1978) Vector coding and command fibres. Behav Brain Sci 1: 22–23

    Article  Google Scholar 

  • Fraser PJ (1981) Semicircular canal morphology and function in crabs. In: Gualtierotti T (ed) The vestibular system function and morphology. Springer, Berlin Heidelberg New York, pp 206–224

    Chapter  Google Scholar 

  • Fraser PJ (1982) Views on the nervous control of complex behaviour. In: Sandeman DC, Atwood HL (eds) The biology of crustacea, vol 4: Neural integration and behaviour. Academic Press, New York, pp 293–319

    Google Scholar 

  • Fraser PJ (1989) Vector coding and multiplicative gain control in the nervous system of the crab. In: Taylor, JG, Mannion, CLT (eds) New developments in neural computing. Adam Hiliger, Bristol, pp 95–102

    Google Scholar 

  • Fraser PJ (1990) Equilibrium control by statocyst activated interneurons. In: Wiese K, Krenz WD, Tauz J, Reichert H, Mulloney B. (eds) Frontiers in crustacean neurobiology. Birkhauser Basel, pp187–192

    Google Scholar 

  • Fraser PJ, Macdonald AG (1994) Crab hydrostatic pressure sensors. Nature 371 383–384

    Article  Google Scholar 

  • Fraser PJ, Sandeman DC (1975) Effects of angular and linear accelerations on semicircular canal interneurons of the crab Scylla serrata J Comp Physiol 96: 205–221

    Article  Google Scholar 

  • Fraser PJ, Bevengut M, Clarac F (1987) Swimming patterns and the activity of identified equilibrium interneurones in the shore crabCarcinus maenasJ Eexp Biol 130: 305–330

    Google Scholar 

  • Fraser PJ, Macdonald AG, Gibson RN (1995) Low pressure hydrostatic pressure receptors in the crab Carcinus maenas (L.) In: Rostain, JC, Macdonald, AG, Marquis, RE (eds) Basic and applied high pressure biology IV. Medsubhyp Int 5: 59–68

    Google Scholar 

  • Fraser PJ, Macdonald AG, Cruickshank SF, Schraner MP (1997) Integration of hydrostatic pressure information by identified interneurones in the crabCarcinus maenas(L.); long-term recordings. Proc R Inst Navig RIN 97: 25.1–25.10

    Google Scholar 

  • Graham JM, Bowers R, Gibson RN (1987) A versatile tide machine and associated activity recorder. J Mar Biol Assoc UK 67: 709–716

    Article  Google Scholar 

  • Hardy AC, Bainbridge R (1951) Effect of pressure on the behaviour of decapod larvae. Nature (Lond) 168: 327–328

    Article  Google Scholar 

  • Hensen V (1863) Studien über das Gehörorgan der Decapoden. Z Wiss Zool 13: 319–412

    Google Scholar 

  • Janse C (1980) The function of statolith hair and free hook hair receptors in the statocyst of the crabScylla serrata.J Comp Physiol A 137: 51–62

    Article  Google Scholar 

  • Janse C, Sandeman DC (1979a) The role of the fluid filled balance organs in the induction of phase and gain in the compensatory eye reflex of the crabScylla serrata.J Comp Physiol 130: 95–100

    Article  Google Scholar 

  • Janse C, Sandeman DC (1979b) The significance of canal-receptor properties for the induction of phase and gain in the fluid filled balance organs of the crabScylla serrata.J Comp Physiol 130: 101–111

    Article  Google Scholar 

  • Kinzig H (1919) Untersuchungen über den Bau der statocysten einiger dekapoder Crustaceen. Verh Naturhist-Med Ver Heidetb, NF 14: 1–19

    Google Scholar 

  • Knight-Jones EW, Morgan E (1966) Responses of marine animals to changes in hydrostatic pressure. Oceanogr Mar Biol Ann Rev 4: 267–299

    Google Scholar 

  • Kreidl A (1893) Weitere Beiträge zur Physiologic des Ohrlabyrinthes. II Versuche an Krebsen. Sitzungsber Akad Wiss (Wien) III, 102:149–174

    Google Scholar 

  • Kuhn A (1914) Die reflectorische Erhaltung des Gleichgewichtes bei Krebsen. Verh Dtsch Zool Ges 24: 262–277

    Google Scholar 

  • Lang D, Yonge CM (1935) The function of the tegumental glands in the statocyst ofHomarus vulgaris.J Mar Biol Assoc UK 20: 333–359

    Article  Google Scholar 

  • Lemmnitz G, Wolff HG (1990) Recording from sensory cells in the statocyst ofAstacus.In Wiese K et al. (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 97–105

    Google Scholar 

  • Macdonald AC, Fraser PJ (1999) The transduction of very small hydrostatic pressures. Comp Biochem Physiol A 122: 13–36

    CAS  Google Scholar 

  • Morgan E (1967) The pressure sense of the swimming crabMacropipus holsatus(Fabricus), and its possible role in the migration of the species. Crustaceana 13: 275

    Article  Google Scholar 

  • Muller M (1999) Size limitations in semicircular duct systems. J Theor Biol 198: 405–437

    Article  PubMed  Google Scholar 

  • Muller H, Verhagen JHG (1988a) A new quantitative model of total endolymph flow in the system of semicircular canal ducts. J Theor Biol 134: 473–501

    Article  PubMed  CAS  Google Scholar 

  • Muller H, Verhagen, JHG (1988b) A mathematical approach enabling calculation of the total endolymphflow in the semicircular ducts. J Theor Biol 134: 503–529

    Article  PubMed  CAS  Google Scholar 

  • Murayama M, Takahata M (1996) Sensory control mechanisms of the uropod equilibrium reflex during walking in the crayfishProcambarus clarkii.J Exp Biol 199: 521–528

    PubMed  Google Scholar 

  • Murayama M, Takahata M (1998a) Neuronal mechanisms underlying the facilitatory control of uropod steering behaviour during treadmill walking in crayfish. I. Antagonistically regulated background excitability of uropod motoneuronesProcambarus clarkii.J Eexp Biol 201: 1283–1294

    Google Scholar 

  • Murayama M, Takahata M (1998b) Neuronal mechanisms underlying the facilitatory control of uropod steering behaviour during treadmill walking in crayfish. II.Modulation of uropod motoneurone excitation by leg proprioception. J Exp Biol 201: 1295–1305

    PubMed  Google Scholar 

  • Naylor E, Atkinson RJW (1972) Pressure and rhythmic behaviour of inshore marine animals. Symp Soc Exp Biol 26: 395–416

    PubMed  CAS  Google Scholar 

  • Neil DM (1975) The mechanism of statocyst operation in the mysid shrimpPraunus flexuosus. J Exp Biol 62: 685–700.

    Google Scholar 

  • Neil DM (1982) Compensatory eye movements. In: Sandeman DC, Atwood HL (eds) The biology of crustacea vol 4: Neural integration and behaviour. Academic Press, New York, pp 133–163

    Google Scholar 

  • Newland PL (1989) The uropod righting reaction of the crayfishProcambarus clarkii(Girard): an equilibrium response driven by two largely independent reflex pathways. J Comp Physiol A 164: 685–696

    Article  Google Scholar 

  • Offut GC (1970) Acoustic stimulus perception by the American lobsterHomarus americanus.Experientia 26: 1276–1278

    Article  Google Scholar 

  • Okada Y, Yamaguchi T (1985) Eyestalk movements in the crayfishProcambarus clarlcii.Comp Biochem Physiol 81: 157–164

    Article  Google Scholar 

  • Ozeki M, Takahata M, Hisada M (1978) Afferent response patterns of the crayfish statocyst with ferrite grain statoliths to magnetic field stimulation. J Comp Physiol 123: 1–10

    Article  Google Scholar 

  • Panning A (1924) Die Statocyst vonAstacus fluviatilis (Potamobius astacusLeach) and ihre Beziehung zu dem sie umgebenden Gewebe. Z Wiss Zool 123: 305–358

    Google Scholar 

  • Paul H, Barnes WJP, Varju D (1998) Roles of eyes, leg proprioceptors and statocysts in the compensatory eye movements of freely walking land crabs(Cardiosoma guanhumi).J Exp Biol 201: 3395–3409

    PubMed  Google Scholar 

  • Prentiss CW (1901) The otocyst of decapod crustacea:its structure, development and function. Bull Mus Comp Zool Hary Coll 36: 167–254

    Google Scholar 

  • Reid DG, Naylor E (1990) Entrainment of bimodal circatidal rhythms in the shore crabCarcinus maenas.J Biol Rhythms 5: 333–347

    Article  PubMed  CAS  Google Scholar 

  • Reid DG, Naylor E (1993) Different free-running periods in split components of the circatidal rhythm in the shore crabCarcinus maenas.Mar Ecol Prog Ser 102: 295–302

    Article  Google Scholar 

  • Rice AL (1964) Observations on the effects of changes in hydrostatic pressure on the behaviour of some marine animals. J Mar Biol Ass UK 44: 163–175

    Article  Google Scholar 

  • Sandman DC, Okajima A (1972) Statocyst-induced eye movements in the crabScylla serrataI. The sensory input from the statocyst. J Exp Biol 57: 187–204

    Google Scholar 

  • Schone H (1951) Die statische Gleichgewichtsorientierung bei dekapoden Crustaceen. Verh Dtsch Zool Ges 16: 157–162

    Google Scholar 

  • Schone H (1954) Statocystenfunktion and statische Lageorientierung bei dekapoden Krebsen. Z Vergl Physiol 36: 241–260

    Article  Google Scholar 

  • Schone H, Neil D (1977) The integration of leg position receptors and their interaction with statocyst inputs in spiny lobsters. (Reactions ofPalinurus vulgaristo substrate tilt III). Mar Behav Physiol 5: 45–59

    Article  Google Scholar 

  • Schone H, Steinbrecht RA (1968) Fine structure of statocyst receptor ofAstacus fluviatilis.Nature (Lond) 220: 184–186

    Article  CAS  Google Scholar 

  • Sekiguchi H, Terasawa T (1997) Statocyst ofJasus edwardsiipueruli (Crustacea, Palinuridae), with a review on crustacean statocysts. Mar Freshwater Res 48: 715–719

    Article  Google Scholar 

  • Silvey GE, Dunn PA, Sandeman DC (1976) Integration between statocyst sensory neurons and oculomotor neurons in the crabScylla serrata.II. The thread hair sensory receptors. J Comp Physiol 108: 45–52

    Article  Google Scholar 

  • Stein A (1975) Attainment of positional information in the crustacean statocyst. Fortschr Zool 23: 109–119

    PubMed  CAS  Google Scholar 

  • Stein A, Schone H (1972) Über das Zusammenspiel von Schwereorientierung and Orientierung zur Unterlage beim Flusskrebs. Verh Dtsch Zool Ges 65: 225–229

    Google Scholar 

  • Takahata M, Hisada M (1979) Functional polarization of statocyst receptors in the crayfishProcambarus clarkiiGirard. J Comp Physiol 130: 201–207

    Article  Google Scholar 

  • Takahata M, Murayama M (1992) Multiple gate control of the descending statocystmotor pathway in the crayfishProcambarus clarkiiGirard. J Comp Physiol A 170: 463–477

    Article  PubMed  CAS  Google Scholar 

  • Takahata M, Yoshino M, Hisada M (1981) The association of uropod steering with posturalmovement of the abdomen in the crayfish. J Exp Biol 91: 341–345

    Google Scholar 

  • Takahata M, Komatsu H, Hisada M (1984) Positional orientation determined by the behaviouralcontext inProcambarus clarkiiGirard (Decapoda: Macrura). Behaviour 88: 240–265

    Article  Google Scholar 

  • Yoshino M, Takahata M, Hisada M (1980) Staocyst control of the uropod movements in response to body rolling in the crayfish. J Comp Physiol 139: 243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraser, P.J., Takahata, P.M. (2002). Statocysts and Statocyst Control of Motor Pathways in Crayfish and Crabs. In: Wiese, K. (eds) Crustacean Experimental Systems in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56092-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56092-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62860-3

  • Online ISBN: 978-3-642-56092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics