Skip to main content

Nuklearmedizinische Verfahren in der Kardiologie

  • Chapter
Technik in der Kardiologie
  • 554 Accesses

Zusammenfassung

Im Gegensatz zur Koronarangiographie, der röntgenologischen Darstellung der Herzkranzgefäße nach vorheriger Kontrastmittelinjektion, die nur eine morphologische Beurteilung evtl. arteriosklerotisch verengter, größerer Herzkranzgefäßäste erlaubt, ermöglichen nuklearmedizinische Verfahren die qualitative bzw. quantitative Beurteilung einer gestörten Koronardurchblutung und eines gestörten Myo-kardstoffwechsels. Bei Patienten mit vermuteter oder bekannter koronarer Herzkrankheit ermöglichen nuklearmedizinische Methoden einen objektiven Ischämienachweis, eine zuverlässige prognostische Risikostratifizierung, eine Beurteilung der Myokardvitalität, die Einschätzung des kardialen Narkose- und Operationsrisikos bei allgemeinchirurgischen Eingriffen sowie eine funktionelle Überprüfung des Effektes revaskularisierender Maßnahmen, insbesondere nach Ballondilatation (PTCA) oder Bypass-Operation von Herzkranzgefäßen [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Atkins HL, Budinger TF, Lebowitz E et al. (1977) Thallium-201 for medical use. Part 3: Human distribution and physical imaging properties. J Nucl Med 18: 133–140.

    Google Scholar 

  2. Bax JJ, Visser FC, Blanksma PK, Veening MA, Tan ES, Willemsen ATM, van Lingen A, Teule GJJ, Vaalburg W, Lie KI, Visser CA (1996) Comparison of myocardial uptake of flourine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 37: 1631–1636.

    Google Scholar 

  3. Bax JJ, Visser FC, van Lingen A, Visser CA, Teule GJJ (1995) Myocardial F-18 fluorodeoxyglucose imaging by SPECT. Clin Nucl Med 20: 486–490.

    Article  Google Scholar 

  4. Bax JJ, Visser VD, Blanksma PK et al. (1996) Comparison of myocardial uptake of fluorine-18 fluorodesoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 37: 1631–1636.

    Google Scholar 

  5. Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30: 1451–1460.

    Article  Google Scholar 

  6. Beller GA, Zaret BL (2000) Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 101: 1465–1478.

    Article  Google Scholar 

  7. Bengel FM, Ueberfuhr P, Ziegler S, Nekolla S, Reichart B, Schwaiger M (1999) Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 Hydroxyephedrine. Circulaton 99: 1866–1871.

    Article  Google Scholar 

  8. Blankenberg FG, Katsikis PD, Tait JF, Davis E, Naumovski L, Ohtsuki K, Kopiwoda S, Abrams MJ, Darkes M, Robbins RC, Maecker HT, Strauss HW (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95: 6349–6354.

    Article  Google Scholar 

  9. Boden WE, O’Rourke RA, Crawford MH, Blaustein AS, Deedwania PC, Zoble RG, Wexler LF, Kleiger RE, Pepine CJ, Ferry DR, Chow BK, Lavori PW (1998) Outcomes in patients with acute non-Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy. N Engl J Med 25: 1785–1792.

    Article  Google Scholar 

  10. Bradley-Moore PR, Lebowitz E, Greene MW, Atkins HC, Ansari AN (1975) Thallium-201 for medical use: II. Biologic behavior. J Nucl Med 16: 156.

    Google Scholar 

  11. Burch GE, Threefoot SA, Ray CT (1955) The rate of disappearance of 86Rb from the plasma, the biologic decay rates of 86Rb, and the applicability of 86Rb as a tracer of potassium in man with and without chronic congestive failure. J Lab & Clin Med 45: 371.

    Google Scholar 

  12. Camici P, Ferranini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32: 217–238.

    Article  Google Scholar 

  13. Carrio I, Pieri PL, Narula J, Prat L, Riva P, Pedrini L, Pretolani E, Caruso G, Sarti G, Es-torch M, Berna L, Riambau V, Matias-Guiu X, Pak C, Ditlow C, Chen F, Khaw BA (1998) Noninvasive localization of human atherosclerotic lesions with indium 111-labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells. J Nucl Cardiol 5: 551–557.

    Article  Google Scholar 

  14. vom Dahl J, Eitzman DT, al-Aouar AR et al. (1994) Relation of regional function, per-fusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 90: 2356–2366.

    Article  Google Scholar 

  15. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M (1994) Early detection of abnormal coronary flow reserve in asymptomatic measure at high risk for coronary artery disease using positron emission tomography. Circulation 90: 808–817.

    Article  Google Scholar 

  16. De Puey EG, Nichols K, Dobrinsky C (1993) Left ventricular ejection fraction assessed from gated technetium-99m-Sestamibi SPECT. J Nucl Med 34: 1871–1876.

    Google Scholar 

  17. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, Nishika-wa A, Merhige ME (1989) Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative arteriography in 193 patients. Circulation 79: 825–835.

    Article  Google Scholar 

  18. Dewanjee MK, Haider N, Narula J (1999) Imaging with radiolabeled antisense oligonucleotides for the detection of intracellular messenger RNA and cardiovascular disease. J Nucl Cardiol 6: 345–356.

    Article  Google Scholar 

  19. DiCarli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, Phelps ME, Schelbert HR (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91: 1944–1951.

    Article  Google Scholar 

  20. DiCarli MF, Davidson M, Little R et al. (1994) Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 73: 527–533.

    Article  Google Scholar 

  21. Dinkelborg LM, Duda SH, Hanke H, Tepe G, Hilger CS, Semmler W (1998) Molecular imaging of atherosclerosis using a technetium-99m-labeled endothelin derivative. J Nucl Med 39: 1819–1822.

    Google Scholar 

  22. Eitzman D, al-Aouar Z, Kanter H, vom Dahl J, Kirsh M, Deeb GM et al. (1992) Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 20: 559–565.

    Article  Google Scholar 

  23. Elhendy A, Geleijnse ML, van Domburg RT, Bax JJ, Nierop PR, Beerens SAM, Valkema R, Krenning EP, Ibrahim MM, Roelandt JRTC (1998) Comparison of dobutamine stress echocardiography and technetium-99m sestamibi single-photon emission tomography for the diagnosis of coronary artery disease in hypertensive patients with and without left ventricular hypertrophy. Eur J Nucl Med 25: 69–78.

    Article  Google Scholar 

  24. Elmaleh DR, Narula J, Babich JW, Petrov A, Fishman AJ, Khaw BA, Rapaport E, Za-mecnik PC (1998) Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates. Proc Natl Acad Sci USA 95: 691–695.

    Article  Google Scholar 

  25. Gambhir SS, Barrio JR, Herschman HR, Phelps ME (1999) Imaging gene expression: principles and assays. J Nucl Cardiol 6: 219–233.

    Article  Google Scholar 

  26. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96: 2333–2338.

    Article  Google Scholar 

  27. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS (1995) Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 36: 2138–2147.

    Google Scholar 

  28. Go TR, Marwick TH, MacIntyre WJ et al. (1990) A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyrida-mole stress in the diagnosis of coronary artery disease. J Nucl Med 31: 1899–1905.

    Google Scholar 

  29. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M (1999) Delayed response of myocardial flow reserve to lipid lowering therapy with fluvastatin. Circulation 99: 475–481.

    Article  Google Scholar 

  30. Haas F, Haehnel CJ, Picker W et al. (1997) Perioperative PET viability assessment and peri- and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 30: 1693–1700.

    Article  Google Scholar 

  31. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death. Differential stratification for risk of cardiac death and myocardial infarction. Circulation 97: 535–543.

    Google Scholar 

  32. Hicks K, Ganti G, Mullani N, Gould K (1989) Automated quantitation of threedimensional cardiac positron emission tomography for routine clinical use. J Nucl Med 30: 1787–1797.

    Google Scholar 

  33. Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32: 57–62.

    Article  Google Scholar 

  34. Kalff V, Schwaiger M, Nguyen N, McClanahan TB, Gallagher K (1992) The relationship between myocardial blood flow and glucose uptake in ischemic canine myocardium determined with F-18 deoxyglucose. J Nucl Med 33: 1346–1353.

    Google Scholar 

  35. Laubenbacher C, Rothley J, Sitomer J et al. (1993) An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localisation of coronary artery disease using nitrogen 13-ammonia. J Nucl Med 34: 968–978.

    Google Scholar 

  36. Lebowitz E, Greene MW, Bradley-Moore PR, Atkins H, Ansari AN, Richards P, Belgrave E (1973) 201T1 for medical use (Abstract). J Nucl Med 14: 421.

    Google Scholar 

  37. Lees RS, Lees AM, Strauss HW (1983) External imaging of human atherosclerosis. J Nucl Med 24: 154–156.

    Google Scholar 

  38. Love WD, Romney RB, Burch GE (1954) A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium-86. Circ Res 2: 112.

    Google Scholar 

  39. Lucignani G, Paolini G, Landoni C et al. (1992) Presurgical identification of hibernating myocardium by combined use of technetium-99m hexokinase 2-methoxy-isobutylisonitrile single photon emission tomography and flourine-18 fluoro-2-deoxyglucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19: 874–881.

    Article  Google Scholar 

  40. Maddahi J, DiCarli M, Davidson M et al. (1992) Prognostic significance of PET assessment of myocardial viability in patients with left ventricular dysfunction. J Am Coll Cardiol 19: 142A.

    Article  Google Scholar 

  41. Merlet P, Valette H, Dubois-Rande J et al. (1992) Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 33: 471–477.

    Google Scholar 

  42. Mruck S, Kuwert T (2000) Myokardszintigraphie. Z Kardiol 89: Suppl 1, I/54–I/58.

    Article  Google Scholar 

  43. Narula J, Petrov A, Bianchi C, Ditlow CC, Lister BC, Dilley J, Pieslak I, Chen FW, Torchi-lin VP, Khaw BA (1995) Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab’)2 specific for the proliferating smooth muscle cells of human atheroma: imaging with conventional and negative charge-modified antibody fragments. Circulation 92: 474–484.

    Google Scholar 

  44. Narula J, Virmani R, Iskandrian AE (1999) Strategic targeting of atherosclerotic lesions. J Nucl Cardiol 6: 81–90.

    Article  Google Scholar 

  45. Nekolla S, Schlieringer S, Stadler E, Schwaiger M (1996) World wide web and Virtual re-ality markup language extensions in cardiac SPECT and PET data processing. J Nucl Med 37: 172P.

    Google Scholar 

  46. Pitkanen OP, Raitakari OT, Ronnemaa T, Niinikoski H, Nuutila P, Lida H, Viikari JS, Knuuti J (1997) Influence of coronary risk Status on coronary flow reserve in healthy young men. Am J Cardiol 79: 1690–1692.

    Article  Google Scholar 

  47. Porenta G, Kuhle W, Czernin J et al. (1992) Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET. J Nucl Med 33: 1628–1636.

    Google Scholar 

  48. Sandler MP, Bax JJ, Patton JA, Visser FC, Martin WH, Wijns W (1998) Fluorine-18-fluorodeoxyglucose cardiac imaging using a modified scintillation camera. J Nucl Med 39: 2035–2043.

    Google Scholar 

  49. Sandler MP, Videlefsky S, Delbeke D et al. (1995) Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 fluorodesoxy-gluco-se/technetium-99m-MIBI and dualisotope simultaneous-acquisition single photon emission computed tomography. J Am Coll Cardiol 26: 870–876.

    Article  Google Scholar 

  50. Schelbert HR, Henze E, Phelps ME, Kuhl DE (1982) Assessment of regional myocardial ischemia by positron emission computed tomography. Am Heart J 103: 588–597.

    Article  Google Scholar 

  51. Schelbert HR, Phelps ME, Hoffmann EJ, Huang S, Selin CE (1979) Regional myocardial perfusion assessed with N-13 ammonia and positron emission computerized axial tomography. Am J Cardiol 43: 209–218.

    Article  Google Scholar 

  52. Schicha H (1993) Nuklearmedizin - Compakt-Lehrbuch, 2. Aufl. Schattauer, Stuttgart New York.

    Google Scholar 

  53. Schicha H, Emrich D (1983) Nuklearmedizin in der kardiologischen Praxis. GIT, Darmstadt.

    Google Scholar 

  54. Schoen H, Schelbert HR, Najafi A et al. (1982) C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography: II Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Am Heart J 1103: 548–561.

    Google Scholar 

  55. Schwaiger M, Fishbein MC, Block M et al. (1987) Metabolic and ultrastructural abnormalities during ischemia in canine myocardium: non-invasive assessment by positron emission tomography. J Mol Cell Cardiol 19: 259–269.

    Google Scholar 

  56. Schwaiger M, Hutchins G, Rosenspire K, Haka M, Wieland DM (1990) Quantitative evaluation of the sympathetic nervous system by PET in patients with cardiomyopathy. J Nucl Med 31: 792.

    Google Scholar 

  57. Schwaiger M, Pirich C (2000) Positronen-Emissions-Tomographie. Z Kardiol 89: Suppl. 1, I/59–I66.

    Article  Google Scholar 

  58. Schwaiger M, Schelbert HR, Ellison D et al. (1985) Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 6: 336–347.

    Article  Google Scholar 

  59. Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ, Watson DD (1998) Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 31: 331–337.

    Article  Google Scholar 

  60. Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, Iskandrian AE, Kesler KL, Travin MI, Lewin HC, Hendel RC, Borges-Neto S, Miller DD (1999) The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol 33: 661–669.

    Google Scholar 

  61. Strauss HW, Harrison K, Langan JK, Lebowitz E, Pitt B (1975) Thallium-201 for myocardial imaging: Relation of thallium-201 to regional myocardial perfusion. Circulation 51: 641–645.

    Article  Google Scholar 

  62. Strauss HW, Pitt B (1977) Thallium-201 as a myocardial imaging agent. Semin Nucl Med 7: 49–58.

    Article  Google Scholar 

  63. Taillefer R, De Puey EG, Udelson JE, Beller GA, Latour Y, Reeves F (1997) Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 29: 69–77.

    Article  Google Scholar 

  64. Tamaki N, Othani H, Yamashity K et al. (1991) Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 32: 673–678.

    Google Scholar 

  65. Tamaki N, Yonekura Y, Yamashita K et al. (1993) Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction. Comparison with stress thallium imaging. J Am Coll Cardiol 22: 1621–1627.

    Google Scholar 

  66. Tillisch J, Brunken R, Marshall R et al. (1986) Reversibility of cardiac wall motion abnor-malities predicted by positron emission tomography. N Engl J Med 314: 884–888.

    Article  Google Scholar 

  67. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL (1999) Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 6: 41–53.

    Article  Google Scholar 

  68. Underwood SR, Godman B, Salyani S, Ogie JR, Ell PJ (1999) Economics of myocardial perfusion imaging in Europe - The EMPIRE study. Eur Heart J 20: 157–166

    Article  Google Scholar 

  69. Uren NG, Melin JA, DeBruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330: 1782–1788.

    Article  Google Scholar 

  70. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Wagner WF (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells: a novel approach to assessing endothelial function using myocardial contrast echocardiography. Circulation 98: 1–5.

    Google Scholar 

  71. Voth E, Theissen P, Sechtem U, Schicha H (1994) Nuklearmedizinische Belastungsuntersuchungen bei Herzerkrankungen. In: Mager G, Winter UJ (Hrsg) Belastungsuntersuchung bei Herz-, Kreislauf-, Gefäß- und Lungenerkrankungen. Thieme, Stuttgart New York.

    Google Scholar 

  72. Wackers FJT, Berman DS, Maddahi J et al. (1989) Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 myocardial perfusion imaging. J Nucl Med 30: 301–311.

    Google Scholar 

  73. Weber DA, Ivanovic M (1999) Ultra-high resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 6: 332–344.

    Google Scholar 

  74. Weich HF, Strauss HW, Pitt B (1977) The extraction of thallium-201 by the myocardium. Circulation 56: 188–191.

    Article  Google Scholar 

  75. Zaret BL, Rigo P, Wackers FJT et al. (1995) Myocardial perfusion imaging with 99mTc te-trofosmin: comparison to 201T1 imaging and coronary angiography in a phase III multicenter trial. Circulation 91: 313–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bolz, A., Urbaszek, W. (2002). Nuklearmedizinische Verfahren in der Kardiologie. In: Technik in der Kardiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56230-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56230-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62704-0

  • Online ISBN: 978-3-642-56230-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics