Skip to main content
  • 370 Accesses

Abstract

CHAMP is a German BMBF-funded geophysical minisatellite mission of GFZ (GeoFors-chungsZentrum, Potsdam, Germany) in cooperation with DLR. The satellite was built by the German space industry with the intent to foster high-tech capabilities especially in the East-German space industry. The S/C prime contractor is DJO (Jena Optronic GmbH) in Jena, a daughter of DASA (now Astrium). The overall science objectives are in the following fields of investigation:

  • Global long- to medium-wavelength recovery of the static and time variable earth gravity field from orbit perturbation analyses for use in geophysics (solid Earth), geodesy (reference surface), and oceanography (ocean currents and climate), supported by a feasibility test of GPS altimetry for ocean and ice surface monitoring

  • Global Earth magnetic field recovery (solid Earth and solar-terrestrial physics)

  • Atmosphere/ionosphere sounding by GPS radio occultation with applications in weather forecasting, navigation, space weather, and global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Zaglauer, W. Pitz, “CHAMP-The First FLEXBUS in Orbit,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 105–109

    Google Scholar 

  2. Ch. Reigber, P. Schwintzer, “A Challenging Microsatellite Payload for Geophysical Research and Application,” in: Small Satellites for Remote Sensing, Space Congress ’95, Bremen, May 24–25, 1995, pp. 83–89, European Space Report, Munich, 1995

    Google Scholar 

  3. Ch. Reigber, R. Casper, W. Päffgen, “The CHAMP Geopotential Mission,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 25–28

    Google Scholar 

  4. Ch. Schmitt, H. Bauer, “CHAMP Attitude and Orbit Control System,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 269–272

    Google Scholar 

  5. http://op.gfz-potsdam.de/champ/systems/index_SYSTEMS.html

  6. Information provided by T. P. Yunck of NASA/JPL

    Google Scholar 

  7. T. Meehan, C. Duncan, et al., “GPS On A Chip — An Advanced GPS Receiver for Spacecraft,” Proceedings of the ION GPS-97 Conference, Sept. 16–19, 1997, Kansas City, MO, pp. 1509–1517

    Google Scholar 

  8. P. Touboul, B. Foulon, G. M. LeClerc, “STAR, The Accelerometer of the Geodesic Mission CHAMP,” Proceedings of the 49th IAF Congress, Melbourne, Australia, Sept. 28 — Oct. 2, 1998, IAF-98-B.3.07

    Google Scholar 

  9. http://www.vsbs.plh.af.mil/projects/didm/didm.html

  10. D. J. Wingham, “The first of ESA’s Opportunity Missions: CryoSat,” ESA Earth Observer Quarterly, No 63, Sept. 1999, pp. 21–24

    Google Scholar 

  11. http://www.estec.esa.nl/explorer/cryosat/

  12. L. Rey, P. de Chateau-Thierry, L. Phalippou, C. Mavrocordatos, R. Francis, “SIRAL, a High Spatial Resolution Radar Altimeter for the CryoSat Mission,” Proceedings of IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  13. L. Phalippou, L. Rey, P. de Chateau-Thierry, “Overview of the Performances and Tracking Design of the SIRAL Altimeter for the CryoSat Mission,” Proceedings of IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  14. M. Sasaki, H. Hashimoto, “Launch and Observation of the Experimental Geodetic Satellite of Japan’, IEEE Transactions on Geoscience and Remote Sensing, Volume 25, No. 5, Sept. 1987

    Google Scholar 

  15. S.K. Tatevian, A.N. Zakharov, “The Geodynamical Satellite ETALON,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 3–9

    Google Scholar 

  16. S.K. Tatevian, “The Space Geodetic Complex GEO-IK,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 9–11

    Google Scholar 

  17. JANE’s Spaceflight Directory, 1988–89, pp. 332–333

    Google Scholar 

  18. “More than Thirty Years of Pioneering Space Activities,” ESA publication BR-142, 1999, compiled by Andrew Wilson, pp. 46–49

    Google Scholar 

  19. GEOS — Projects under Development, ESA Report to COSPAR, Jan. 1977, pp. 112–123

    Google Scholar 

  20. “GEOS,” Interavia Space Directory 1992–93, pp. 155–156

    Google Scholar 

  21. H.R. Stanley, “The GEOS 3 Project,” Journal of Geophysical Research, July 30, 1979, pp. 3779–3783

    Google Scholar 

  22. P. Argentiero, et al., “Results of GEOS 3/ATS-6 Satellite-to-Satellite Tracking Orbit Determination Experiment,” Journal of Geophysical Research, Vol. 84, No. B8, pp. 3921–3925, 1979.

    Article  Google Scholar 

  23. “The Navy GEOSAT Mission: An Overview,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987

    Google Scholar 

  24. “The Navy GEOSAT Mission Radar Altimeter Satellite Program,” in Monitoring Earth’s Ocean, Land, and Atmosphere from Space, Volume 97, 1985 AIAA, pp. 440–463

    Google Scholar 

  25. J. J. Jensen, F. R. Wooldridge, “The Navy GEOSAT Mission: An Introduction”; McConathy, D. R. and C. C. Kilgus, “The Navy GEOSAT Mission: An Overview”, and W. E. Frain, M. H. Barbagallo, R. J. Harvey, “The Design and Operation of GEOSAT”, all in Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987

    Google Scholar 

  26. J. L MacArthur, P. C. Marth, Jr., J. G. Wall, “The GEOSAT Radar Altimeter,” Johns Hopkins APL Technical Digest, Volume 8, No. 2, 1987

    Google Scholar 

  27. D. R. Mantripp, J. K. Ridley, C. G. Rapley, “Antarctic map from the Geosat Radar Altimeter Geodetic Mission,” ESA Earth Observation Quarterly, No. 37–38, May-June 1992, pp. 6–10

    Google Scholar 

  28. Information provided by B. Barry of Ball Aerospace, Boulder, CO, and by Ch. Kilgus of JHU/APL

    Google Scholar 

  29. Information provided by Ch. Reigber and R. König of GFZ Potsdam

    Google Scholar 

  30. http://www.estec.esa.nl/explorer/goce

  31. H. Rebhan, M. Aguirre, J. Johannessen, “The Gravity Field and Steady-State Ocean Circulation Explorer Mission — GOCE,” ESA Earth Observation Quarterly, No. 66, July 2000, pp. 6–11

    Google Scholar 

  32. Information provided by Mark Drinkwater of ESA/ESTEC

    Google Scholar 

  33. “Gravity Field and Steady-State Ocean Circulation Mission,” ESA publication SP-1233 (1), July 1999

    Google Scholar 

  34. http://www.estec.esa.n1/vrwww/explorer/GRAVITY.html#introduction

  35. “Testing Einstein with Orbiting Gyroscopes, Gravity Probe B,” Stanford University brochure

    Google Scholar 

  36. Information provided by C. W. F. Everitt of Stanford University, Stanford, CA

    Google Scholar 

  37. S. Buchman, C. W. F. Everitt, B. Parkinson, et al., “The Gravity Probe B Relativity Mission,” Advances in Space Research, Vol. 25, No. 6, 2000, pp. 1177–1180

    Article  Google Scholar 

  38. J. A. Lipa, D. H. Gwo, R. K. Kirschman, “Status of the cryogenic inertial reference system for the Gravity Probe B mission,” SPIE, Vol. 1765 Cryogenic Optical Systems and Instruments V, 23–24 July 1992, San Diego, pp. 85–93

    Google Scholar 

  39. C. W. F. Everitt, D. Bardas, Y. M. Xiao, et al., “Three Papers on Gravity Probe B,” presented at The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23–29, 1991

    Google Scholar 

  40. M. Tapley, et al., “Gradiometry Coexperiments to the Gravity Probe B and Step Missions,” Advanced Space Research, Vol. 11, No. 6, 1991, pp. 179–182

    Article  Google Scholar 

  41. R. F. C. Vessot, M. W. Levine, “A Test of the Equivalence Principle Using a Space-Borne Clock,” General Relativity and Gravitation, Vol. 10, No. 3, 1979, pp. 181–204

    Article  Google Scholar 

  42. Note: The first drag-free satellite to fly a completely gravitational orbit was Triad-1 of the US Navy, built by JHU/ APL and launched Sept. 2, 1972. The development of the drag-free system on Triad-1 is a direct flight experiment of George Pugh’s proposal.

    Google Scholar 

  43. C. W. F. Everitt, S. Buchman, D. B. DeBra, G. M. Keiser, J. M. Lockhart, B. Muhlfelder, B. W. Parkinson, J. P. Turneaure, “Gravity Probe B: Countdown to Launch,” NASA contract NAS8–39225 paper, 2000

    Google Scholar 

  44. G. M. Reynolds, R. H. Vassar, R. T. Parmley, et al., “Payload and Spacecraft Technology for GP-B,” Advances in Space Research, Vol. 25, No 6, 2000, pp. 1193–1197

    Article  Google Scholar 

  45. S. Buchman, C. W. F. Everitt, B. Parkinson, et al., “Gyroscopes and Charge Control for the Relativity Mission Gravity Probe B,” Advances in Space research, Vol. 25, No 6, 2000, pp. 1181–1184

    Article  Google Scholar 

  46. Note: PODS = Passive Orbital Disconnect Struts

    Google Scholar 

  47. When a superconductor like niobium spins, it generates a magnetic field effect known as the ‘London moment,’ after physicist Fritz London (1900–1954).

    Google Scholar 

  48. C. W. Hughes, C. Wunsch, V. Zlotnicki, “Satellite Peers through the Oceans from Space,” EOS Transmissions of AGU, Vol. 81, No. 7, Feb. 15, 2000, p. 68

    Google Scholar 

  49. http://www.csr.utexas.edu/grace/

  50. http://essp.gsfc.nasa.gov/grace/

  51. Jason-1 named after the mythological hero who led the Argonauts on the adventurous and hazardous search for the Golden Fleece which they found and returned. “Jason” symbolizes both the hard-fought quest for a worthy goal and civilization’s fascination with the ocean and its mysteries.

    Google Scholar 

  52. M. Lefebvre, “A New Voyage for Jason,” CNES/AVISO Newsletter Nr. 5, April 1997

    Google Scholar 

  53. F. Parisot, T. Lafon, “The JASON-1 Satellite Design and Development Status,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Amibes Juan les Pins, France

    Google Scholar 

  54. P. Escudier, G. Kunstmann, F. Parisot, et al., “Jason System Overview and Status,” CNES/AVISO Newsletter No. 7, Jan. 2000, pp. 9–15

    Google Scholar 

  55. http://topex-www.ipl.nasa.gov/iasonl/

  56. T. Lafon, F. Parisot, “The Jason-1 satellite design and development status,” Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, Aug./Sept. 1998, SSC98-V-6

    Google Scholar 

  57. “Jason-1,” ESE Reference Handbook of NASA, 1999, pp. 120–123

    Google Scholar 

  58. L. Rey, G. Carayon, et al., “Poseidon-2, the new generation altimeter for JASON mission,” Proceedings of IGARSS’99, Hamburg, Vol. III, June 28–July 2, 1999, pp. 1503–1505

    Google Scholar 

  59. Y. Menard, Ph. Escudier, “Cruising the Ocean from Space with Jason-1,” EOS/AGU Transactions, Vol. 81, No 34, Aug. 22, 2000, p. 1 and pp. 390–391

    Google Scholar 

  60. Jane’s Spaceflight Directory 1988–89, Fourth Edition, pp. 83–84

    Google Scholar 

  61. R. Kolenkiewicz, S. Zerbini, “LAGEOS-II: A collaborative NASA-ASI Mission,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 13–18

    Google Scholar 

  62. “Columbia Successfully Lofts Italian Lageos Satellite,” Space News, Oct. 26-Nov. 1, 1992, p. 13 1049)NASA/ASI Lageos II brochure

    Google Scholar 

  63. F. F. Mobley, L. D. Eckard, G. H. Fountain, G. W. Ousley, “Magsat — A New Satellite to Survey the Earth’s Magnetic Field,” IEEE Transactions on Magnetics, Vol. Mag. 16, No. 5, September 1980, pp. 758–760

    Google Scholar 

  64. R. Langel, G. Ousley, J. Berbert, “The MAGSAT Mission,” Geophysical Research Letters, Vol. 9, No. 4, April 1982, pp. 243–245

    Article  Google Scholar 

  65. R. Langel, “The Magnetic Earth as Seen from Magsat, Initial Results,” Geophysical Research Letters, Vol. 9, No.4, April 1982, pp. 239–242

    Article  Google Scholar 

  66. R. Peresty, L. Sehnal, M. Chvojka, P. Dostal, “MIMOSA Satellite,” Acta Astronautica, Vol. 46, No 2–6, 2000, pp. 345–349

    Article  Google Scholar 

  67. L. Sehnal, R. Peresty, L. Pospisilova, P. Dostal, “Software Features for the Orbital Dynamics of the MIMOSA Satellite,” Proceedings of the 51st IAF Congress, Oct. 2–6, 2000, Rio de Janeiro, Brazil, IAF-00-A.5.03

    Google Scholar 

  68. L. Sehnal, R. Peresty, L. Pospisilova, A. Kohlhase, “Mission Analysis of the MIMOSA Satellite,” Proceedings of the 49th IAF Congress, Sept. 28 — Oct. 2, 1998, Melbourne, Australia

    Google Scholar 

  69. L. Sehnal, L. Pospisilova, R. Peresty, P. Dostal, A. Kohlhase, “MIMOSA — A Satellite Measuring Orbital and Atti-tudinal Accelerations caused by Non-Gravitational Forces,” Advances in Space Research, Vol. 23, No 4, 1999, pp. 705–714

    Article  Google Scholar 

  70. http://www.asu.cas.cz/~macek/nep.html

  71. I. Sehnal, R. Peresty, L. Pospisilova, “Project MIMOSA — Final Stage of the Satellite Fabrication,” 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 241–244

    Google Scholar 

  72. P. Lundahl Thomson, F. Hansen, “Danish Ørsted Mission In-Orbit Experiences and Status of the Danish Small Satellite Program,” Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-I-8

    Google Scholar 

  73. Information provided by F. Primdahl of DTU, Lyngby, Denmark

    Google Scholar 

  74. P. Donaldson, “Mapping Magnetism,” Space, April 1993

    Google Scholar 

  75. T. Neubert, M. Mandea, G. Hulot, R. von Frese, F. Primdahl, et al., “0rsted Satellite Captures High-Precision Geomagnetic Field Data,” AGU/EOS, Vol. 82, No 7, Feb. 13, 2001

    Google Scholar 

  76. http://www.dmi.dk/projects/oersted/

  77. J. L. Joergensen, C. C. Liebe, “The Advanced Stellar Compass, Development and Operations,” Acta Astronautica, Vol. 39, No. 9–12, 1996, pp. 775–783

    Article  Google Scholar 

  78. A. Eisenman, C. C. Liebe, “Operation and Performance of a Second Generation,” Solid-State, Star Tracker, The ASC, Acta Astronautica, Vol. 39, No 9–12, 1996, pp. 697–705

    Article  Google Scholar 

  79. M. Lefebvre, “Stella,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, 1989, pp. 25–32

    Google Scholar 

  80. ‘Topex-Poseidon Partners Discuss Sequel’, Space News, Aug. 17–23, 1992, p. 3

    Google Scholar 

  81. “Predicted Topex Positioning Accuracy with Differential GPS Techniques,” presented at, and published in the ‘Proceedings of the first International Symposium on Precise Orbit Positioning with GPS’ April 15, 1985

    Google Scholar 

  82. Lee-Lueng Fu, M. Lefebvre, “TOPEX/Poseidori: Precise Measurement of Sea Level From Space,” CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Missions, June 1989, pp. 51–54

    Google Scholar 

  83. ‘Currents’ — the JPL Tbpex/Poseidon Newsletter, March 1990, Issue 1

    Google Scholar 

  84. Topex/Poseidon Science Investigation Plan, NASA (Document Resource Facility), Sept. 1, 1991

    Google Scholar 

  85. Ch. A. Yamarone, et al., “TOPEX/Poseidon Mission Global Measurements of Sea Level at Unprecedented Accuracy,” 45th Congress of the International Astrohautical Federation, Oct. 9–14, 1994, Jerusalem

    Google Scholar 

  86. TOPEX/Poseidon Internet homepage

    Google Scholar 

  87. A. R. Zieger, et al., “NASA Radar Altimeter for the TOPEX/Poseidon Project,” Proceedings IEEE, Vol. 79, No. 6, June 1991, pp. 810–826

    Article  Google Scholar 

  88. “Other Satellite-Based Microwave Systems,” Lecture Notes in Earth Sciences — The Interdisciplinary Role of Space Geodesy, Springer Verlag I. Mueller, S. Zerbini, chap. 5, p. 161

    Google Scholar 

  89. DORIS — Precision Satellite-Based Orbit Determination, CNES brochure

    Google Scholar 

  90. Information provided by C. Smith of EOS Pty Limited, Canberra, Australia

    Google Scholar 

  91. Armand Fizeau (1819 – 1896) is a French physicist noted for the first experimental determination of the speed of light in 1849. He used a beam of light reflected from a mirror 8 km away. The beam passed through the gaps between the teeth of a rapidly rotating wheel. The speed of the wheel was increased until the returning light passed through the next gap and could be seen. Then “c” was calculated to be 315,000 km/s. Leon Foucault improved on this a year later by using rotating mirrors and got the much more accurate answer of 298,000 km/s. Fizeau’s technique was good enough to confirm that light travels slower in water than in air.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Geodynamic/Earth-System Missions. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics