Skip to main content

Übertragungsstrecken mit Zeitmultiplex

  • Chapter
Optische Kommunikationstechnik
  • 519 Accesses

Zusammenfassung

Die in der digitalen optischen Übertragungstechnik gebräuchlichste Multiplextechnik basiert auf dem Zeitmultiplex (engl. time division multiplexing, TDM). Hierbei werden mehrere Nutzkanäle mit niedriger Datenrate zeitlich ineinander verschachtelt über einen optischen Übertragungskanal mit hoher Datenrate gemeinsam übertragen und empfangsseitig durch einen Demultiplexer wieder in die ursprünglichen Nutzkanäle zerlegt [1].

Allgemeine Literatur

„Optische Telekommunikationssysteme“,Herausg. Hultzsch D., Damm Verlag, 1996 — „Fiber-Optic Communication Systems“, Agrawal,G.P., John Wiley & Sons, 2. Aufl., 1997 — „Optical Fiber Communications IIIA and IIIB“, Herausg. Kaminow, I. P., Koch, T.L., Academic Press, San Diego, 1997

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Kap.6 in „Optische Telekommunikationssysteme“, Herausg, Hultzsch, H., Damm Verlag, 1996

    Google Scholar 

  2. Veith, G.: “European 40 Gbit/s field trials”. Invited Paper, ECOC’ 99, Nice, Techn.Digest, Vol. II, pp. 82–83

    Google Scholar 

  3. Nakazawa, M. et al.: “TDM single channel 640 Gbit/s transmission experiment over 60 km using a 400 fs pulse train and a walk-off free, dispersion-flattened nonlinear optical loop mirror”. Post Deadline Paper PD-14, OFC’ 98

    Google Scholar 

  4. Vgl. z.B. Post-Deadline Papers PD2-1, PD2-2, PD2-4, PD2-5, PD2-8, PD2-5, PD2-10, Technical Digest ECOC’ 99, Nice, France, Sept. 1999

    Google Scholar 

  5. Desurvire, E.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, Inc., New York (1994)

    Google Scholar 

  6. Olsson, N.A.: “Lightwave Systems With Optical Amplifiers.” Journal of Lightwave Technology, vol. 7, no. 7 (1989) 1071–1082

    Article  Google Scholar 

  7. Habbab, I.M.I.; Cimini, Jr., L.J.: “Optimized Performance of Erbium-Doped Fiber Amplifiers in Subcarrier Multiplexed Lightwave AM-VSB CATVSystems”. Journal of Lightwave Technology, Vol.9, No. 10 (1991) 1321–1329

    Article  Google Scholar 

  8. Laming, R.I.; Payne, D.N.: “Noise Characteristics of Erbium-Doped Fiber Amplifier Pumped at 980 nm”. IEEE Photonics Technology Letters vol. 2 no. 6 (1990) 418–421

    Article  Google Scholar 

  9. Elrefraie, A.F. et al.: “Chromatic dispersion limitations in coherent lightwave transmission systems”. Journal of Lightwave Technology, vol. 9 no. 5 (1988) 704–709

    Article  Google Scholar 

  10. Lach, E.; Kaiser, M.; Pöhlmann, W.; Veith, G.:“40 Gbit/s ETDM binary NRZ transmission over installed G.652 field fiber with enhanced dispersion tolerance”. Techn. Digest ECOC’ 99, Vol. II, pp. 88–89, ECOC’99, Nice, 1999

    Google Scholar 

  11. Grüner-Nielsen, L.; Edvold, B.; Magnussen, D. et al.: “Large volume manufacturing of dispersion compensation fiber”. Proc. OFC’ 98, Paper TuD5, San José, Ca., 1998

    Google Scholar 

  12. Yonegawa, K.; Matsuura, A.; Kuwahara, S. et al.: “Dispersion-compensation-free 40 Gbit/s x 4-channel WDM transmission experiment using zero-dispersion-flattened transmission line”. Proc. OFC’ 98, Paper PD20, San José, Ca., 1998

    Google Scholar 

  13. Gnauck, A.H.; Giles, C.R.; Cimini, L.J. et al.: IEEE Photon. Technol. Lett. 3 (1991) 1147

    Article  Google Scholar 

  14. Kashyap, R.: “Photosensitive optical fibers: Devices and applications”. Opt. Fiber Technol. 1 (1994) 17

    Article  Google Scholar 

  15. Loh, W.H.; Laming, R.I.; Gu, M. et al.: Electron. Lett. 31 (1995) 2203

    Article  Google Scholar 

  16. Wang, J.: Petermann, K.: “Small Signal Analysis for Dispersive Optical Fiber Communication Systems”. Journal of Lightwave Technology, Vol. 10, No.1, January 1992, pp. 96–100

    Article  Google Scholar 

  17. Cartaxo, A.; Wedding, B; Idler, W.: “Influence of fiber nonlinearity on the fiber transfer function: theoretical and experimental analysis”. Journal of Lightwave technology, Vol. 17,No. 10, October 1999, pp. 1806–1813

    Article  Google Scholar 

  18. Wedding, V: “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission”. Electron. Lett. 30, 1994, pp. 58–59

    Article  Google Scholar 

  19. Schlump, D.; Wedding, B; Bülow, H.: “Electronic Equalisation of PMD and Chromatic Dispersion induced Distortion after 100km Standard Fibre at 10 Gbit/s”, ECOC’ 98, Madrid, 1998, paper WdC14, pp. 535–536

    Google Scholar 

  20. Wedding, B; Pöhlmann, W.; Schlump, D.; Schlag, E.; Ballentin, R.: “SiGe Circuits for High Bitrate Optical Transmission Systems”. IEEE International Symposium on Circuits and Systems, ISCAS’ 99, Orlando, May 30-June 2, 1999, invited paper 82.3, pp. II-492–II-495

    Google Scholar 

  21. Wedding, B; Schlag, E.: “Novel 10 Gbit/s integrated silicon bipolar decision circuit for dispersion supported transmission”. Electron. Lett. 30, 1994, 5, pp. 399–400

    Article  Google Scholar 

  22. Wedding, B; Köffers, K.; Schlump, D.: “Multi-bit-shift Dispersion Supported Transmission: A new approach to multiply the dispersion-limited transmission span”. ECOC’ 99, Nice, September 26–30, 1999, paper MoC1

    Google Scholar 

  23. Idler, W.; Franz, B; Schlump, D.; Wedding, B; Ramos, A.J.: “Field trial at 40 Gbit/s over 28.6 km and 86 km of Standard Singlemode Fibre using Quaternary Dispers ion Supported Transmission”. Electron. Lett. 25, 1998, vol. 34, pp. 2425–2426

    Article  Google Scholar 

  24. Walklin, S.; Conradi, J: “Multilevel Signaling for Increasing the Reach of 10 Gb/s Lightwave Systems”. Journal of Lightwave Technology, Vol. 17, No. 11, November 1999, pp. 2235–2248

    Article  Google Scholar 

  25. ITU-T Recommendation G.691 (2000) “Optical Interfaces for Single Channel SDH Systems with Optical Amplifiers, and STM-64 systems”

    Google Scholar 

  26. Agrawal, G.: “Nonlinear Fiber Optics”. Second Edition, Academic Press, San Diego, 1995

    Google Scholar 

  27. Song, J.; Fan, C; Yao, Y.; Feng, C: “Improved dispersion-limit formula for IM/DD fiber transmission systems”. Technical Digest, OFC’ 94, San Jose, 1994, WM5, pp. 157–158

    Google Scholar 

  28. Wedding, B: “Reduction of bit error rate in high speed optical transmission systems due to optimized electrical drive pulse shaping”. Technical Digest, ECOC’ 88, Brighton, 1988, pp. 187–190

    Google Scholar 

  29. Wedding, B: “New method for optical transmission beyond dispersion limit”. Electron. Lett. 28, 1992, 14, pp. 1298–1300

    Article  Google Scholar 

  30. Wedding, B; Franz, R; Junginger, B: “10 Gbit/s optical transmission up to 253 km via standard singlemode fibre using the method of dispersion supported transmission”. Journal of Lightwave Technology, vol. 12 no. 10, October 1994, invited paper, pp. 1720–1727

    Article  Google Scholar 

  31. Schlump, D.; Köffers, K.; Pöhlmann, W.; Reichelt, H.J.; Wedding, B: “ 10 Gbit/s Dispersion Supported Transmission Field Trial over 123km Standard Single Mode Fibre for HDTV Studio Interconnection”. Electron. Lett. 31, 1995, 21, pp. 1854–1855

    Article  Google Scholar 

  32. Franz, B; Pöhlmann, W.; Wedding, R; Ramos, A.J.: “Field Experiments at 10 Gbit/s over 80 km, 160km and 240 km standard singlemode fibre installed between Sesimbra and Lisbon using Dispersion Supported Transmission Technique”. Electron. Lett. 31, 1995, 21, pp. 1860–1861

    Article  Google Scholar 

  33. Wedding, B; Köffers, K.; Franz, B; Mathoorasing, D.; Kazmierski, Ch.; Monteiro, P.; Matos, J: “Dispersion-Supported Transmission of 20 Gbit/s over 53 km Standard Singlemode Fibre”. Electron. Lett. 31, 1995, 7,pp. 566–568

    Article  Google Scholar 

  34. Monteiro, P.; Lima, M.; da Rocha, J.P.; Teixeira, A.; Franz, R; Wedding, B: “An Electrically Adjustable Equalizer for Very High Bit Rate Transmission Systems based on Dispersion Supported Transmission”. 5th IEEE International Conference on Electronics, Circuits and Systems, ICEC’98, Lisbon, Sept. 7.–10., 1998

    Google Scholar 

  35. Breuer, D.; Ennser, K.; Petermann, K.: “Comparison of NRZ-and RZ-modulation format for 40 Gbit/s TDM standard-fibre systems”. Proc. ECOC, Oslo, 1996, Vol. 2, pp. 199–202

    Google Scholar 

  36. Yonenaga, K.: “Dispersion-Tolerant Optical Modulation Techniques for High-Speed Transmission Systems”. Third Optoelectronics and Communications Conference, OECC’98, Technical Digest, 1998, pp. 88–89

    Google Scholar 

  37. Penninckx, D.: “Effect of electrical filtering of duobinary signals on the chromatic dispersion transmission limitations”. ECOC’98, Madrid, 1998, pp. 537–538

    Google Scholar 

  38. Sieben, M.; Conradi, J.; Dodds, D.E.: “Optical Single Sideband Transmission at 10 Gbit/s Using Only Electrical Dispersion Compensation”. Journal of Lightwave Technology, Vol. 17, No. 10, October 1999, pp. 1806–1813

    Article  Google Scholar 

  39. Hasegawa, A., Tappert, F.:“Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers”. Appl. Phys. Lett. 23 (1973) 142–143

    Article  Google Scholar 

  40. Hasegawa, A.; Kodama, Y.:“Signal transmission by optical solitons in monomode fibers”. Proc. IEEE 69 (1981) 1145–1150

    Article  Google Scholar 

  41. Gordon, J.P.; Haus, H.A.:“Random walk of coherently amplified solitons in optical fiber transmission”. Opt. Lett. 11 (1986) 665–667

    Article  Google Scholar 

  42. Nakazawa, M.; Suzuki, K.: “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains”. Electron. Lett. 29 (1993) 729–730

    Article  Google Scholar 

  43. Mollenauer, L.F.; Lichtman, E. et al.: “Demonstration, using sliding-frequency guiding filters, of error free soliton transmission over more than 20Mm at 20 Gbit/s in two channel WDM”. Electron. Lett. 29 (1993) pp. 910–911

    Article  Google Scholar 

  44. Naka, A. et al.: Electron. Lett. 32 (1996) 1694–1695

    Article  Google Scholar 

  45. Bouchoule, S. et al.: “Photonic technologies for ultrahigh speed information highways”. Opt. Fiber Technology, OFT-5 (1999) 275–301

    Article  Google Scholar 

  46. Nesset, D. et al.: “40 Gbit/s transmission over 186.6 km of installed fiber using mid-span spectral inversion for dispersion compensation”. Paper ThI3, OFC’ 99, San Diego, Ca

    Google Scholar 

  47. Poole, C.D.; Nagel, J.: (Kap. 6) Polarization Effects in Lightwave Systems. In Herausg.: Kaminow, I.P.; Koch, T.L.: Optical Fiber Communications IIIA. Academic Press, San Diego (1997)

    Google Scholar 

  48. Bülow, H.: Temporal variation of installed fiber PMD and the impact on high-bitrate optical transmission. Proc. NOC’ 98 II, Manchester, in Herausg.: Faulkner, D.W.; Harmer, A.L.: Long-Haul, ATM and Multi-Media Networks NOC’ 98. IOS Press Amsterdam (1998) 253–258

    Google Scholar 

  49. Gleeson, L.M.; Sikora, E.S.R.; Mahoney, M.J.O.: Experimental and numerical investigation into the penalties induced by second order polarisation mode dispers ion at 10 Gb/s. Proc. ECOC 97, 1 Edinburgh (1997) 15–18

    Google Scholar 

  50. Bülow, H.; Veith, G.: Temporal Dynamics of Error-rate Degradation induced by Polarisaiton Mode Dispersion Fluctuation of a Field Fiber Link. Proc. ECOC’97 1 Edinburg (1997) 115–118

    Google Scholar 

  51. Gruhl, H.; Herchendröder, G.; Mattheus, A.; Vobian, J.: Characterization of 1100km of installed standard monomode fibre and statistical analysis in view of network design. Proc. NOC’ 97 II, Anwerp in Herausg.: Faulkner, D.W.; Harmer, A.L.: Core and ATM Networks NOC’ 97. IOS Press Amsterdam (1997) 59–64

    Google Scholar 

  52. Peters, J.; Dori, A.; Kapron, F.: Bellcore’s fiber measurement audit of existing cable plant foruse with high bandwidth systems. Proc, NFOEC 97 1 (1997) 19–30

    Google Scholar 

  53. Weiershausen, W.; Scholl, H.; Kuppers, F.; Leppla, R.; Hein, R; Burkhard, H.; Lach, E.; Veith, G.: “40-Gbit/s field test on an installed fiber link with high PMD and investigation of differential group delay impact on the transmission performance”. Techn. Dig. OFC’ 99 ThI5 San Diego (1999)

    Google Scholar 

  54. Bülow, H.: System Outage Probability Due to First-and Second-Order PMD. Photon. Technol. Lett., vol. 10, no. 5, (1998) 696–698

    Article  Google Scholar 

  55. Bülow, H.: Equalisation of Bit Distortion Induced by Polarisation Mode Dispersion. Proc. NOC’ 97 II Anwerp in Herausg.: Faulkner, D.W.; Harmer, A.L.: Core and ATM Networks NOC’ 97. IOS Press Amsterdam (1997) 65–72

    Google Scholar 

  56. Heismann, F.; Fishman, D.A.; Wilson, D.L.: “Automatic compensation of first-order polarization mode dispersion in a 10Gb/s transmission system”. Proc. ECOC’98 Madrid 1 WdC11 (1998) 529–530

    Google Scholar 

  57. Sandel, D.; Hinz, S.; Yoshida-Dierolf, M.; Noé, R.; Wessel, R.; Suche, H.: Optical polarisation-made dispersion compensation of 2.4 bit duration of differential group delay at 40 Gbit/s, Electron. Lett., vol. 35, no. 16 (1999) 1365–1367

    Article  Google Scholar 

  58. Winters, J.H.; Gitlin, R.D.: Electrical Signal Processing Techniques in Long-Haul Fiber-Optic Systems. Trans. on Commun., vol. 38, no. 9, (1990) 1439–1453

    Article  Google Scholar 

  59. Bülow, H.; Buchali, F.; Baumert, W.; Ballentin, R.; Wehren, T.: PMD Mitigation at 10 Gbit/s Using Linear and Nonlinear Integrated Electronic Equaliser Circuits. Electron. Lett., vol. 36, no. 2 (2000) 163–164

    Article  Google Scholar 

  60. Chesnoy, J.:“Global undersee networks”. Techn. Digest OFC’99, paper TuD1, San Diego, Ca. 1999

    Google Scholar 

  61. Akiba, S.; Yamamoto, S.:“WDM undersea cable network technology for 100 Gbit/s and beyond”. Opt. Fiber Technology, 4 (1998) 19–34

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veith, G., Wedding, B., BüLow, H. (2002). Übertragungsstrecken mit Zeitmultiplex. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics