Skip to main content

Oxidation of H-Terminated Silicon

  • Chapter
Fundamental Aspects of Silicon Oxidation

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 46))

Abstract

Recently, the densities, functions and operating speeds of integrated circuits driven by ever-increasing numbers of metal-oxide-semiconductor field-effect transistors (MOSFETs) have increased remarkably to produce not only ultrahigh-speed computers, but also many intelligent operating systems. This is largely a result of continuing progress in Si single-crystal growth and Si-related process and microfabrication technologies for integrated circuits. It is made possible by the stable electrical and thermal properties of Si-Si02 systems and the abundant silicon resources on the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, E. Ganin, S. Rishton, D. S. Zicherman, H. Schmid, M. R. Polcari, H. Y. Ng, P. J. Restle, T. H. Chang and R. H. Dennard, IEEE Electron. Device Lett. 8, 463 (1987).

    Article  Google Scholar 

  2. H. Sasaki Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito and H. Iwai,IEDM 94-593, 1994.

    Google Scholar 

  3. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399 (1999) 758.

    Article  CAS  Google Scholar 

  4. T. Hattori, Crit. Rev. Solid State and Mater. Sci. 20, 339 (1995).

    Article  CAS  Google Scholar 

  5. T. Takahagi, I. Nagai, A. Ishitani and H. Kuroda, J. Appl. Phys. 64, 3516 (1988);T. Takahagi, A. Ishitani, H. Kuroda, Y. Nagasawa, H. Ito and S. Wako, J. Appl. P hys. 68, 2187 (1990).

    Article  CAS  Google Scholar 

  6. M. Sakuraba, J. Murota and S. Ono, J. Appl. Phys. 75, 3701 (1994).

    Article  CAS  Google Scholar 

  7. G. S. Higashi, R. S. Becker, Y. J. Chabal and A. J. Becker, Appl. Phys. Lett. 58, 1656 (1991); P. Jakob, P. Dumas and Y. J. Chabal, Appl. Phys. Lett. 59, 2968 (1991).

    Article  Google Scholar 

  8. S. Watanabe, N. Nakayama and T. Ito, Appl. Phys. Lett. 59, 1458 (1991); S. Watanabe, M. Shigeno, N. Nakayama and T. Ito, Jpn. J. Appl. Phys. 30 (1991) 3575; S. Watanabe and Y. Sugita, Surf. Sci. 327, 1 (1995).

    Article  Google Scholar 

  9. T. Aoyama, K. Goto, T. Yamazaki and T. Ito, J. Vac. Sci. & Technol. A14,2909 (1996).

    CAS  Google Scholar 

  10. H. Bender, S. Verhaverbeke, M. Caymax, O. Vatel and M. M. Hynes, J. Appl. Phys. 75, 1207 (1994).

    Article  CAS  Google Scholar 

  11. T. Ohmi, M. Morita, A. Teramoto, K. Makihara and K. S. Tseng, Appl. Phys. Lett. 60, 2126 (1992).

    Article  CAS  Google Scholar 

  12. F. M. Ross and J. M. Gibson, Phys. Rev. Lett. 68, 1782 (1992).

    Article  Google Scholar 

  13. H. Watanabe, K. Kato, T. Uda, K. Fujita, M. Ichikawa, T. Kawamura, and K. Terakura, Phys. Rev. Lett. 80, 345 (1998).

    Article  CAS  Google Scholar 

  14. N. Miyata, H. Watanabe, and M. Ichikawa, Phys. Rev. B 58, 13670 (1998).

    Article  CAS  Google Scholar 

  15. K. Ohishi and T. Hattori, Jpn. J. Appi. Phys. 33, L675 (1994).

    Article  Google Scholar 

  16. A. Omura, H. Sekikawa and T. Hattori, Appl. Surf. Sci. 117/118, 127 (1997).

    Article  CAS  Google Scholar 

  17. K. Ishikawa, H. Ogawa, S. Oshida, K. Suzuki. and S. Fujimura,Ext. Abstr. of Int. Conf. on Solid State Devices and Materials (Osaka, 1995) P. 500.

    Google Scholar 

  18. Y. Sugita, N. Awaji, and S. Watanabe, Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials (Yokohama, 1996) p. 380.

    Google Scholar 

  19. H. Nohira and T. Hattori, Appl. Surf. 117/118, 119 (1997).

    Article  CAS  Google Scholar 

  20. H. Nohira, A. Omura, M. Katayama, and T. Hattori, Appl. Surf. Sci. 123/124, 546 (1998).

    Article  CAS  Google Scholar 

  21. K. Hirose, H. Nohira, T. Koike, T. Aizaki and T. Hattori, Appl. Surf. Sci. 123/124, 542 (1998).

    Article  CAS  Google Scholar 

  22. K. Hirose, H. Nohira, T. Koike, K. Sakano, and T. Hattori, Phys. Rev. B59, 5617 (1999).

    Article  CAS  Google Scholar 

  23. H. Nohira, K. Takahashi and T. Hattori, Thin Solid films vols. 343/344, 401 (1999).

    Article  Google Scholar 

  24. H. Nohira, K. Takahashi and T. Hattori, Proc. 4th Intern. Symp. on UCPSS ’98, (Ostend, 1998) p.241.

    Google Scholar 

  25. E. P. Gusev, H. C. Lu, T. Gustafsson, and E. Garfunkel, Phys. Rev. B52, 1759 (1995).

    Article  CAS  Google Scholar 

  26. M. Ohashi and T. Hattori, Jpn. J. Appl. Phys. 36, L397(1997).

    Article  Google Scholar 

  27. T. Hattori, M. Fujimura, T. Yagi, and M. Ohashi, Appl. Surf. Sci. 123/124, 87 (1998).

    Article  CAS  Google Scholar 

  28. M. Fujimura, K. Inoue, H. Nohira, and T.Hattori, Appl. Surf. Sci. 162/163, 62 (2000).

    Article  Google Scholar 

  29. U. Gelius, B. Wannberg, P. Baltzer, H. Fellner-Feldegg, G. Carlsson, C. -G. Johansson, J. Larsson, P. Munger and G. Vergerfos, J. Electron Spectrosc. & Relat. Phenom. 52 (1990) 747.

    Article  CAS  Google Scholar 

  30. P. Guthner, J. Vac. Sci. & Technol. B14, 2428 (1996).

    Article  Google Scholar 

  31. H. Nohira, Y. Tamura, H. Ogawa, and T. Hattori, IEICE Trans. Electron. E75-C, 757 (1992).

    Google Scholar 

  32. Tougaard: Surf. Sci. 216, 343 (1989).

    Article  CAS  Google Scholar 

  33. F. J. Himpsel, F. R.McFeely, A. Talev-Ibrahimi, J. A.aYarmoff and G. Hollin- ger, Phys. Rev. B38, 6084 (1988).

    Article  CAS  Google Scholar 

  34. T. Hattori, K. Hirose, H. Nohira, K. Takahashi, T. Yagi, Appl. Surf. Sci. 144/145, 297 (1999).

    Article  Google Scholar 

  35. Z. H. Lu and J. P. McCaffrey, B. Brar, G. D. Wilk, R. M. Wallance, L. C. Feldman, and S. P. Tay, Appl. Phys. Lett. 71, 2764 (1998).

    Article  Google Scholar 

  36. T. Hattori, T. Aiba, E. Iijima, Y. Okube, H. Nohira, N. Tate and M. Katayama, Appl. Surf. Sci. 104/105, 323 (1995).

    Article  Google Scholar 

  37. Y. Nagasawa, H. Ishida, T. Takahagi, A. Ishitani and H. Kuroda, Solid State Electron. 33, Suppl., 129 (1990).

    CAS  Google Scholar 

  38. H. Kageshima, K. Shiraishi and M. Uematsu, Jpn. J. Appl. Phys. 38, L971 (1999).

    Article  CAS  Google Scholar 

  39. I. Ohdomari and H. Akatsu, Solid-State Electronics, 33, Suppl., 265 (1990).

    CAS  Google Scholar 

  40. H. Ikeda, K. Hotta, T. Yamada, S. Zaima, H. Iwano, and Y. Yasuda, J. Appl. Phys. 77, 5125 (1995).

    Article  CAS  Google Scholar 

  41. H. Nohira, H. Sekikawa, M. Matsuda and T. Hattori, Appl. Surf. Sci. 104/105, 359 (1996).

    Article  CAS  Google Scholar 

  42. T. Aiba, K. Yamauchi, Y. Shimizu, N. Tate, M. Katayama and T. Hattori, Jpn. J. Appl. Phys. 34, L707(1995).

    Article  Google Scholar 

  43. K. Inoue, H. Nohira and T. Hattori, (unpublished).

    Google Scholar 

  44. Y. Yasaka, S. Uenaga, H. Yasutake, M. Takakura, S. Miyazaki, and M. Hirose, Mater. Res. Soc. Symp. Proc. 259, 385 (1992).

    Article  CAS  Google Scholar 

  45. V. J. B. Torres, Interface Science 3, 133 (1995).

    Article  CAS  Google Scholar 

  46. R. Williams, Phys. Rev. A140, 569 (1965)

    CAS  Google Scholar 

  47. T. Ohmi, M. Morita, and T. Hattori, in The Physics and Chemistry of Si02 and the Si-Si02 Interface, Plenum Press (New York, 1988) p. 413.

    Google Scholar 

  48. T. Yoshida, D. Imafuku, J. L. Alay, S. Miyazaki, and M. Hirose, Jpn. J. Appl. Phys. 34, L903 (1995).

    Article  CAS  Google Scholar 

  49. C. Heimlich, M. Kubota, Y. Murata, T. Hattori, M. Morita, and T. Ohmi, Vacuum 41, 793 (1990).

    Article  CAS  Google Scholar 

  50. E. Cartier and J. H. Stathis, Microelectronic Engineering 28, 3 (1995).

    Article  CAS  Google Scholar 

  51. Y. Teramoto, N. Watanabe, M. Fujimura, H. Nohira and T. Hattori, Appl. Surf. Sci. 159/160, 67 (2000).

    Article  Google Scholar 

  52. N. Watanabe, Y. Teramoto, A. Omura, H. Nohira and T. Hattori, Appl. Surf. Sci., 166, 460 (2000)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nohira, H., Hattori, T. (2001). Oxidation of H-Terminated Silicon. In: Chabal, Y.J. (eds) Fundamental Aspects of Silicon Oxidation. Springer Series in Materials Science, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56711-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56711-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62583-1

  • Online ISBN: 978-3-642-56711-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics