Skip to main content

Investigation of Femtosecond Chemical Reactivity by Means of Fluorescence Up-Conversion

  • Chapter
New Trends in Fluorescence Spectroscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 1))

Abstract

Fluorescence spectroscopy is a powerful tool for the study of the reactivity of chemical and biological systems The fluorescence spectrum, the fluorescence quantum yield, and the fluorescence lifetime of a chromophore depend on its microenvironment and the solute-solvent interactions Fluorescence lifetimes also depend on the kinetics of possible chemical reactions Fluorescence measurements in the time domain thus provide detailed information about intraand inter-molecular photophysical and photochemical processes During the past 30 years the development of laser sources and ultrafast techniques has opened new ways for the study of the fluorescent excited states of molecules in the nano-, pico-, and femtosecond time range When analyzing the rise and the decay (often multi-exponential) of their fluorescence intensity as a function of time, the pre-exponential factors and the fluorescence time constants have to be determined accurately after a careful deconvolution using a computer-based algorithm Several techniques are used: phase modulation spectroscopy with a modulated laser pump source on a time scale comparable to the decay times of interest, time-correlated single photon counting under picosecond laser excitation (alternatively nanosecond flashlamp excitation), ultra-fast streak cameras designed for the conversion of time dependent light emission into distance dependent electron impact on a phosphor screen Because a sufficient resolution is not accessible with those techniques for the measurement of fast decays in the 50 fs-100 ps range, fluorescence up-conversion in nonlinear optical crystals is the technique of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mialocq J-C (1997) Fundamentals of interaction between light and matter In: Chanon M (ed) Homogeneous photocatalysis, vol 2 Wiley Series in Photoscience and Photo-Engineering, pp 15–54

    Google Scholar 

  2. Lakowicz JR, Gryczynski I (1991) Frequency-domain fluorescence spectroscopy In: Lakowicz JR (ed) Topics in fluorescence spectroscopy 1 Techniques Plenum Press, New-York, pp 293–335

    Google Scholar 

  3. O’Connor DV, Phillips D (1984) Time-correlated single photon counting Academic Press, London

    Google Scholar 

  4. Birch DJS, Imhof RE (1991) Time-domain fluorescence spectroscopy using time-correlated single-photon counting In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. 1 Techniques Plenum Press, New-York, pp 1–95

    Google Scholar 

  5. Birch DJS, Hungerford G (1994) Instrumentation for red/near-infrared fluorescence In: Lakowicz JR (ed) Topics in fluorescence spectroscopy 4 Probe design and chemical sensing. Plenum Press, New-York, pp 377–416

    Google Scholar 

  6. Lampert RA, Chewter LA, Phillips D, O’Connor DV, Roberts AJ, Meech SR (1983): Standards for nanosecond fluorescence decay time measurements Anal Chem 55:68–73

    Article  CAS  Google Scholar 

  7. Nordlund TM (1991) Streak cameras for time-domain fluorescence In: Lakowicz JR (ed) Topics in fluorescence spectroscopy 1 Techniques Plenum Press, New-York, pp 183–259

    Google Scholar 

  8. Davis LM, Parigger C (1992) Use of streak camera for time-resolved photon counting fluorimetry. Meas Sci Technol 3:85–90

    Article  CAS  Google Scholar 

  9. Reddy BR, Venkateswarlu P (1983) Energy up-conversion in LaF3:Nd3+ J Chem Phys 79:5845–5850

    Article  CAS  Google Scholar 

  10. Duguay MA, Hansen JW (1969) An ultrafast gate Appl Phys Lett 15:192–194

    Article  CAS  Google Scholar 

  11. Duguay MA, Hansen JW (1968) Optical sampling of subnanosecond light pulses Appl Phys Lett 13:178–180

    Article  Google Scholar 

  12. Mahr H, Hirsch MD (1975) An optical up-conversion light gate with picosecond resolution. Optics Commun 13:96–99

    Article  Google Scholar 

  13. Hirsch MD, Marcus MA, Lewis A, Mahr H, Frigo N (1976) A method for measuring picosecond phenomena in photolabile species The emission lifetime of bacteriorhodopsin. Biophysical J 16:1399–1409

    Article  CAS  Google Scholar 

  14. Hallidy LA, Topp MR (1977) Picosecond luminescence detection using type-II phase-matched frequency conversion Chem Phys Lett 46:8–14

    Article  CAS  Google Scholar 

  15. Kopainsky B, Kaiser W (1978) Investigation of intra-and intermolecular transfer processes by picosecond fluorescence gating Optics Commun 26:219–224

    Article  CAS  Google Scholar 

  16. Hirsch MD, Mahr H (1979) Luminescence decay kinetics of malachite green on a picosecond time scale Chem Phys Lett 60:299–303

    Article  CAS  Google Scholar 

  17. Beddard GS, Doust T, Porter G (1981) Picosecond fluorescence depolarisation measured by frequency conversion Chem Phys 61:17–23

    Article  CAS  Google Scholar 

  18. Daly T, Mahr H (1978) Time-resolved luminescence spectra in highly photo-excited CdSe at 1.8 K Solid State Communications 25:323–326

    Article  CAS  Google Scholar 

  19. Shah J, Damen TC, Deveaud B, Block D (1987) Subpicosecond luminescence spectroscopy using sum frequency generation Appl Phys Lett 50:1307–1309

    Article  CAS  Google Scholar 

  20. Shah J (1988) Ultrafast luminescence spectroscopy using sum-frequency generation IEEE J Quantum Electron 24:276–288

    Article  Google Scholar 

  21. Kahlow MA, Jarzeba W, DuBruil TP, Barbara PF (1988) Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion Rev Sci Instr 59:1098–1109

    Article  CAS  Google Scholar 

  22. Castner EW, Maroncelli M, Fleming GR (1987) Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents J Chem Phys 86:1090–1097

    Article  CAS  Google Scholar 

  23. Castner EW, Bagchi B, Maroncelli M, Webb SP, Ruggiero AJ, Fleming GR (1988) The dynamics of polar solvation Ber Bunsenges Phys Chem 92:363–372

    CAS  Google Scholar 

  24. Mokhtari A, Chesnoy J, Laubereau A (1989) Femtosecond-time and frequency resolved fluorescence spectroscopy of a dye molecule Chem Phys Lett 155:593–598

    Article  CAS  Google Scholar 

  25. Barbara PF, Jarzeba W (1990) Ultrafast photochemical intramolecular charge and excited state solvation In: Volman DH, Hammond GS, Gollnick K (eds) Advances in photochemistry, vol 15 Wiley, New York, pp 1–68

    Chapter  Google Scholar 

  26. Rosenthal SJ, Xie X, Du M, Fleming GR (1991) Femtosecond solvation dynamics in acetonitrile: observation of the inertial contribution to the solvent response J Chem Phys 95:4715–4718

    Article  CAS  Google Scholar 

  27. Hébert P, Baldacchino G, Gustavsson T, Mialocq JC (1993) Subpicosecond fluorescence study of the LDS 751 dye molecule in ethanol Chem Phys Lett 213:345–350

    Article  Google Scholar 

  28. Mialocq J-C, Hébert P, Baldacchino G, Gustavsson T (1994) Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe A subpicosecond study In: Gauduel Y, Rossky PJ (eds) Ultrafast reaction dynamics and solvent effects AIP Conference Proceedings 298, pp 359–367

    Google Scholar 

  29. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water Nature (London) 369:471–473

    Article  CAS  Google Scholar 

  30. Gustavsson T, Baldacchino G, Mialocq JC, Pommeret S (1995) A femtosecond fluorescence up-conversion study of the dynamic Stokes shift of the DCM dye molecule in polar and non-polar solvents Chem Phys Lett 236:587–594

    Article  CAS  Google Scholar 

  31. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited J Phys Chem 99:17311–17337

    Article  CAS  Google Scholar 

  32. Tominaga K, Walker GC (1995) Femtosecond experiments on solvation dynamics of an anionic probe molecule in methanol J Photochem Photobiol A: Chem 87:127–133

    Article  CAS  Google Scholar 

  33. van der Meulen P, Zhang H, Jonkman AM, Glasbeek M (1996) Subpicosecond solvation relaxation of 4-(dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran in polar liquids J Phys Chem 100:5367–5373

    Article  Google Scholar 

  34. Shirota H, Pal H, Tominaga K, Yoshihara K (1996) Deuterium isotope effect on the solvation dynamics of methanol: CH3OH, CH3OD, CD3OH, and CD3OD J Phys Chem 100: 14575–14577

    Article  CAS  Google Scholar 

  35. Middelhoek ER, Zhang H, Verhoeven JW, Glasbeek M (1996) Subpicosecond studies of solvation dynamics of fluoroprobe in liquid solution Chem Phys 211:489–497

    Article  CAS  Google Scholar 

  36. Eilers-König N, Kühne T, Schwarzer D, Vöhringer P, Schroeder J (1996) Femtosecond dynamics of intramolecular charge transfer in 4-dimethylamino-4′-cyanostilbene in polar solvents Chem Phys Lett 253:69–76

    Article  Google Scholar 

  37. Gustavsson T, Cassara L, Gulbinas V, Gurzadyan G, Mialocq JC, Pommeret S, Sorgius M, van der Meulen P (1998) Femtosecond spectroscopy study of relaxation processes of three amino-substituted coumarin dyes in methanol and dimethylsulfoxide J Phys Chem A 102:4229–4245

    Article  CAS  Google Scholar 

  38. Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules, 2nd edn. Academic Press, New-York, pp 21–28

    Google Scholar 

  39. Fee RS, Maroncelli M (1994) Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics Chem Phys 183:235–247

    Article  CAS  Google Scholar 

  40. Gustavsson T, Hébert P, Baldacchino G, Pommeret S, Naskrecki R, Mialocq JC (1996) Rôle de la charge de la sonde moléculaire sur la solvatation Aspects statiques et dynamiques J Chim Phys 93:117–127

    CAS  Google Scholar 

  41. Hébert P, Baldacchino G, Gustavsson T, Mialocq JC (1994) Photochemistry of an unsymmetrical polymethine-cyanine dye Solute-solvent interactions and relaxation dynamics of LDS 751 J Photochem Photobiol A: Chem 84:45–55

    Article  Google Scholar 

  42. Pant D, Levinger NE (1999) Polar solvation dynamics of H2O and D2O at the surface of zirconia nanoparticles J Phys Chem B 103:7846–7852

    Article  CAS  Google Scholar 

  43. Mialocq JC, Gustavsson T, Pommeret S (1999) Spectroscopie laser femtoseconde dans l’eau, milieu biologique J Phys IV 9(Pr5): 101–104

    Article  CAS  Google Scholar 

  44. Boczar BP, Topp MR (1982) New developments in picosecond time-resolved fluorescence spectroscopy: vibrational relaxation phenomena In: Eisenthal KB, Hochstrasser RM, Kaiser W, Laubereau A (eds) Picosecond phenomena III Springer, Berlin Heidelberg New York,pp 174–178

    Chapter  Google Scholar 

  45. Ohta K, Kang TJ, Tominaga K, Yoshihara K (1999) Ultrafast relaxation processes from a higher excited electronic state of a dye molecule in solution: a femtosecond time-resolved fluorescence study Chem Phys 242:103–114

    Article  CAS  Google Scholar 

  46. Johnson AE, Tominaga K, Walker GC, Jarzeba W, Barbara PF (1993) Femtosecond electron transfer: Experiment and theory Pure Appl Chem 65:1677–1680

    Article  CAS  Google Scholar 

  47. Kahlow MA, Kang TJ, Barbara PF (1987) Electron-transfer times are not equal to longitudinal relaxation times in polar aprotic solvents J Phys Chem 91:6452–6455

    Article  CAS  Google Scholar 

  48. Kang TJ, Kahlow MA, Giser D, Swallen S, Nagarajan V, Jarzeba W, Barbara PF (1988) Dynamic solvent effects in the electron-transfer kinetics of S1 bianthryls J Phys Chem 92:6800–6807

    Article  CAS  Google Scholar 

  49. Gulbinas V, Kodis G, Jursenas S, Valkunas L, Gruodis A, Mialocq J-C, Pommeret S, Gustavsson T (1999) Charge transfer induced excited state twisting of N,N-dimethylaminobenzylidene-l,3-indandione in solution J Phys Chem 103:3969–3980

    Article  CAS  Google Scholar 

  50. Humbs W, van Veldhoven E, Zhang H, Glasbeek M (1999) Subpicosecond fluorescence dynamics of organic light-emitting diode tris(8-hydroxyquinoline)metal complexes. Chem Phys Lett 304:10–18

    Article  CAS  Google Scholar 

  51. Nagasawa Y, Yartsev AP, Tominaga K, Bisht PB, Johnson PB, Yoshihara K (1995) Dynamical aspects of ultrafast intermolecular electron transfer faster than solvation process: substituents effects and energy gap dependence J Phys Chem 99:653–662

    Article  CAS  Google Scholar 

  52. Shirota H, Pal H, Tominaga K, Yoshihara K (1998) Ultrafast intermolecular electron transfer in coumarin-hydrazine system Chem Phys 236:355–364

    Article  CAS  Google Scholar 

  53. Shirota H, Pal H, Tominaga K, Yoshihara K (1998) Substituent effect and deuterium isotope effect of ultrafast intermolecular electron transfer: coumarin in electron-donating solvent. J Phys Chem A102:3089–3102

    Article  CAS  Google Scholar 

  54. Rubtsov IV, Shirota H, Yoshihara K (1999) Ultrafast photoinduced solute-solvent electron transfer: configuration dependence J Phys Chem A 103:1801–1808

    Article  CAS  Google Scholar 

  55. Rehm JM, McLendon GL, Nagasawa Y, Yoshihara K, Moser J, Grätzel M (1996) Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface J Phys Chem 100:9577–9578

    Article  Google Scholar 

  56. Burfeindt B, Hannappel T, Storck W, Willig F (1996) Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor J Phys Chem 100:16463–16465

    Article  CAS  Google Scholar 

  57. Douhal A, Fiebig T, Chachisvilis M, Zewail AH (1998) Femtochemistry in nano-cavities: reactions in cyclodextrins J Phys Chem A 102:1657–1660

    Article  CAS  Google Scholar 

  58. Share P, Pereira M, Sarisky M, Repinec S, Hochstrasser RM (1991) Dynamics of proton transfer in 7-azaindole J Lumin 48/49:204–208

    Article  Google Scholar 

  59. Takeuchi S, Tahara T (1997) Observation of dimer excited-state dynamics in the double proton transfer reaction of 7-azaindole by femtosecond fluorescence up-conversion. Chem Phys Lett 277:340–346

    Article  CAS  Google Scholar 

  60. Takeuchi S, Tahara T (1998) Femtosecond ultraviolet-visible fluorescence study of the excited-state proton-transfer reaction of 7-azaindole dimer J Phys Chem A 102:7740–7753

    Article  CAS  Google Scholar 

  61. Fiebig T, Chachisvilis M, Manger M, Zewail AH, Douhal A, Garcia-Ochoa I, de La Hoz Ayuso A (1999) Femtosecond dynamics of double proton transfer in a model DNA base pair: 7-azaindole dimers in the condensed phase J Phys Chem A 103:7419–7431

    Article  CAS  Google Scholar 

  62. Marks D, Zhang H, Glasbeek M, Borowicz P, Grabowska A (1997) Solvent dependence of (sub)picosecond proton transfer in photo-excited [2,2′-bipyridyl]-3,3′-diol Chem Phys Lett 275:370–376

    Article  CAS  Google Scholar 

  63. Glasbeek M, Marks D, Zhang H (1997) Femtosecond studies of double-proton transfer in [2,2′-bipyridyl]-3,3′-diol J Lumin 72-74:832–834

    Article  CAS  Google Scholar 

  64. Prosposito P, Marks D, Zhang H, Glasbeek M (1998) Femtosecond double-proton transfer dynamics in [2,2′-bipyridyl]-3,3′-diol in sol-gel glasses J Phys Chem A 102:8894–8902

    Article  CAS  Google Scholar 

  65. Gurzadyan GG, Tran-Thi T-H, Gustavsson T (1998) Time-resolved fluorescence spectroscopy of high-lying electronic states of Zn-tetraphenylporphyrin J Chem Phys 108: 385–388

    Article  CAS  Google Scholar 

  66. Yoshizawa M, Susuki K, Kubo A, Saikan S (1998) Femtosecond study of S2 fluorescence in malachite green in solutions Chem Phys Lett 290:43–48

    Article  CAS  Google Scholar 

  67. Gottfried NH, Roither B, Scherer POJ (1997) New aspects of the ultrafast electronic decay of malachite green in solution Opt Commun 143:261–264

    Article  CAS  Google Scholar 

  68. Iwai SI, Murata S, Tachiya M (1998) Ultrafast fluorescence quenching by electron transfer and fluorescence from the second excited state of a charge transfer complex as studied by femtosecond up-conversion spectroscopy J Chem Phys 109:5963–5970

    Article  CAS  Google Scholar 

  69. Takeuchi S, Tahara T (1997) Ultrafast fluorescence study on the excited singlet-state dynamics of all-trans-retinal J Phys Chem A 101:3052–3060

    Article  CAS  Google Scholar 

  70. Chosrowjan H, Mataga N, Nakashima N, Imamoto Y, Tokunoga F (1997) Femtosecondpicosecond fluorescence studies on excited state dynamics of photoactive yellow protein from Ectothiorhodospira halophila Chem Phys Lett 290:267–272

    Article  Google Scholar 

  71. Wachter RM, King BA, Heim R, Kallio K, Tsien RY, Boxer SG, Remington SJ (1997) Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein Biochemistry 36:9759–9765

    Article  CAS  Google Scholar 

  72. Mataga N, Chosrowjan H, Shibata Y, Tanaka F (1998) Ultrafast fluorescence quenching dynamics of flavin chromophores in protein nanospace J Phys Chem B 102:7081–7084

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mialocq, JC., Gustavsson, T. (2001). Investigation of Femtosecond Chemical Reactivity by Means of Fluorescence Up-Conversion. In: Valeur, B., Brochon, JC. (eds) New Trends in Fluorescence Spectroscopy. Springer Series on Fluorescence, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56853-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56853-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63214-3

  • Online ISBN: 978-3-642-56853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics