Skip to main content

Meq: An MDV-Specific bZIP Transactivator with Transforming Properties

  • Chapter
Marek’s Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 255))

Abstract

The principal cause of chicken T-lymphomas and their accompanying demyelinating disease is infection with Marek’s disease virus (MDV) (Calnek et al. 1997), a herpesvirus. Mareks disease can be prevented by vaccination with an antigenically related nonpathogenic herpesvirus, HVT (turkey herpesvirus). MDV is among the most potent oncogenic herpesviruses, and induces tumors as early as 4 weeks post-inoculation. As such, the virus is likely to encode a direct-acting oncogene or transforming gene. To search for a possible candidate(s), early studies focused on genes expressed in tumor cells or transformed cells. In general, in these cells where there is no virus production, the transcriptional activities are confined to the repeat regions only, which, based on BamHI digestion map, span the BamH, -I2, -Q2, -L, and -A fragments (Ross 1999). Within this region, most of the open reading frames are short and their existence as proteins not conclusively resolved. The exceptions are pp38, ICP4, and Meq, for which the protein products have been clearly identified.It should be noted that most of these studies were carried out using the entire population of tumor cells and cell lines; it is not clear whether all these proteins are expressed in the same or different cell populations. This is an important issue, as in any given latent state, there is usually a fraction of cells, spontaneously releasing viruses, which may contribute to the detection of some lytic gene products. In surveying through the literature, Meq, the focus of this chapter, emerges as one that is most consistently expressed in all tumors and transformed cell lines, both at the transcript and at the protein level. Meq has a structure resembling nuclear oncogenes and, as will be described in detail below, shared properties, characteristic of oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson AL, Kenney S (1999) The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73(8):6551–6558

    PubMed  CAS  Google Scholar 

  • Askovic S, Baumann R (1997) Activation domain requirements for disruption of Epstein-Barr virus latency by ZEBRA. J Virol 71(9):6547–6554

    PubMed  CAS  Google Scholar 

  • Baumann M, Mischak H, Dammeier S, Kolch W, Gires O, Pich D, Zeidler R, Delecluse HJ, Hammerschmidt W (1998) Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-Otetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 72(10):8105–8114

    PubMed  CAS  Google Scholar 

  • Baxevanis A, Vinson C (1993) Interactions of coiled coils in transcription factors: where is the specificity? Curr Opin Gen Dev 3:278–285

    Article  CAS  Google Scholar 

  • Brunovskis P, Qian Z, Li D, Lee LF, Kung HJ (1996) Functional analysis of the MDV basic leucine zipper product, Meq. The 5th International Symposium on Marek’s Disease. American Association of Avian Pathologists, Kellogg Center, Michigan State University, East Lansing, Michigan

    Google Scholar 

  • Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, et al. (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60(3):509–520

    Article  PubMed  CAS  Google Scholar 

  • Calnek BW, Witter RL (1997) Marek’s disease. Iowa State University Press, Ames, Iowa, USA

    Google Scholar 

  • Chesi M, Bergasagel PL, Shonokun O, Martelli ML, Brents LA, Chen T, Schrock E, Ried T, Kuehl WM (1998) Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91(19):4457–4463

    PubMed  CAS  Google Scholar 

  • Chi T, Lieberman P, Ellwood K, Carey M (1995) A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377(6546):254–257

    PubMed  CAS  Google Scholar 

  • Delling U, Roy S, Sumner-Smith M, Barnett R, Reid L, Rosen CA, Sonenberg N (1991) The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88(14):6234–6238

    Article  PubMed  CAS  Google Scholar 

  • Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ (1996) The MDM 2 oncoprotein binds specifically to RNA through its RING finger domain. Mol Med 2(4):439–451

    PubMed  CAS  Google Scholar 

  • Francis A, Ragoczy T, Gradoville L, Heston L, El-Guindy A, Endo Y, Miller G (1999) Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein-Barr virus R transactivator. J Virol 73(6):4543–4551

    PubMed  CAS  Google Scholar 

  • Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM 2 and human papillomavirus E6. Mol Cell Biol 18(12):7288–7293

    PubMed  CAS  Google Scholar 

  • Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD (1998) The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72(11):8559–8567

    PubMed  CAS  Google Scholar 

  • Glover J, Harrison S (1995) Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373:257–261

    Article  PubMed  CAS  Google Scholar 

  • Gutsch DE, Holley-Guthrie EA, Zhang Q, Stein B, Blanar MA, Baldwin AS, Kenney SC (1994) The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B. Mol Cell Biol 14(3):1939–1948

    PubMed  CAS  Google Scholar 

  • Hammes SR, Greene WC (1993) Multiple arginine residues within the basic domain of HTLV-I Rex are required for specific RNA binding and function. Virology 193(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Hatton T, Zhou S, Standring DN (1992) RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol 66(9):5232–5241

    PubMed  CAS  Google Scholar 

  • Isfort R, Jones D, Kost R, Witter R, Kung HJ (1992) Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Natl Acad Sci USA 89(3):991–995

    Article  PubMed  CAS  Google Scholar 

  • Isfort RJ, Qian Z, Jones D, Silva RF, Witter R, Kung HJ (1994a) Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology 203(1):125–133

    Article  PubMed  CAS  Google Scholar 

  • Isfort RJ, Witter R, Kung HJ (1994b) Retrovirus insertion into herpesviruses. Trends Microbiol 2(5):174–177

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Brunovskis P, Witter R, Kung HJ (1996) Retroviral insertional activation in a herpesvirus:transcriptional activation of US genes by an integrated long terminal repeat in a Marek’s disease virus clone. J Virol 70(4):2460–2467

    PubMed  CAS  Google Scholar 

  • Jones D, Isfort R, Witter R, Kost R, Kung HJ (1993) Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequences. Proc Natl Acad Sci USA 90(9):3855–3859

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Kung HJ (1992a) A heat-shock-like sequence in the meq gene promoter binds a factor in MDV lymphoblastoid cells. The 19th World’s Poultry Congress. Ponsen and Looijen, Wageningen, Amsterdam, The Netherlands

    Google Scholar 

  • Jones D, Lee L, Liu JL, Kung HJ, Tillotson JK (1992b) Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors [published erratum appears in Proc Natl Acad Sci USA 1993 Mar 15; 90(6):2556]. Proc Natl Acad Sci USA 89(9):4042–4046

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, Freedman DA, Levine AJ, McLendon GL (1998) Metal and RNA binding properties of the hdm2 RING finger domain. Biochemistry 37(48):17005–17015

    Article  PubMed  CAS  Google Scholar 

  • Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59(1):207–218

    Article  PubMed  CAS  Google Scholar 

  • Lee CZ, Lin JH, Chao M, McKnight K, Lai MM (1993) RNA-binding activity of hepatitis delta antigen involves two arginine-rich motifs and is required for hepatitis delta virus RNA replication. J Virol 67(4):2221–2227

    PubMed  CAS  Google Scholar 

  • Lee LF, Wu P, Sui D, Ren D, Kamil J, Kung HJ, Witter RL (2000) The complete unique long sequence and the overall genomic organization of the GA strain of Marek’s disease virus. Proc Natl Acad Sci USA 97(11):6091–6096

    Article  PubMed  CAS  Google Scholar 

  • Lin SF, Robinson DR, Miller G, Kung HJ (1999) Kaposi’s sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein-Barr virus. J Virol 73(3): 1909–1917

    PubMed  CAS  Google Scholar 

  • Liu JL, Lee LF, Ye Y, Qian Z, Kung HJ (1997) Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ. J Virol 71(4):3188–3196

    PubMed  CAS  Google Scholar 

  • Liu JL, Lin SF, Xia L, Brunovskis P, Li D, Davidson I, Lee LF, Kung HJ (1999a) MEQ and V-IL8:cellular genes in disguise? Acta Virol 43(2–3):94–101

    PubMed  CAS  Google Scholar 

  • Liu JL, Ye Y, Qian Z, Qian Y, Templeton DJ, Lee LF, Kung HJ (1999b) Functional interactions between herpesvirus oncoprotein MEQ and cell cycle regulator CDK2. J Virol 73(5):4208–4219

    PubMed  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6): 1799–1805

    PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7): 1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K, Morimura T, Takagi M, Lee SI, Cho KO, Takahashi H, Maeka Y, Sugimoto C, Onuma M (1999) Expression of bcl-2 and bcl-x genes in lymphocytes and tumor cell lines derived from MDV-infected chickens. Acta Virol 43(2–3): 128–132

    PubMed  CAS  Google Scholar 

  • Parcells MS, Dienglewicz RL, Anderson AS, Morgan RW (1999) Recombinant Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a marker gene within the context of the MDV genome. J Virol 73(2): 1362–1373

    PubMed  CAS  Google Scholar 

  • Pfitzner E, Becker P, Rolke A, Schule R (1995) Functional antagonism between the retinoic acid receptor and the viral transactivator BZLF1 is mediated by protein-protein interactions. Proc Natl Acad Sci USA 92(26): 12265–12269

    Article  PubMed  CAS  Google Scholar 

  • Qian Z, Brunovskis P, Lee L, Vogt PK, Kung HJ (1996) Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein. J Virol 70(10):7161–7170

    PubMed  CAS  Google Scholar 

  • Qian Z, Brunovskis P, Rauscher III F, Lee L, Kung HJ (1995) Transactivation activity of Meq, a Marek’s disease herpesvirus bZIP protein persistently expressed in latently infected transformed T cells. J Virol 69(7):4037–4044

    PubMed  CAS  Google Scholar 

  • Ross NL (1999) T-cell transformation by Marek’s disease virus. Trends Microbiol 7(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. Embo J 17(2):554–564

    Article  PubMed  CAS  Google Scholar 

  • Sacher R, Ahlquist P (1989) Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J Virol 63(11):4545–4552

    PubMed  CAS  Google Scholar 

  • Sarisky RT, Gao Z, Lieberman PM, Fixman ED, Hayward GS, Hayward SD (1996) A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 70(12):8340–8347

    PubMed  CAS  Google Scholar 

  • Schuermann M, Hunter J, Hennig G, Muller R (1991) Non-leucine residues in the leucine repeats of Fos and Jun contribute to the stability and determine the specificity of dimerization. Nucl Acids Res 19:739–746

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10(1):94–99

    Article  PubMed  CAS  Google Scholar 

  • Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 90(12):5455–5459

    Article  PubMed  CAS  Google Scholar 

  • Tao W, Levine AJ (1999a) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2- mediated degradation of p53. Proc Natl Acad Sci USA 96(6):3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Tao W, Levine AJ (1999b) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96(12):6937–6941

    Article  PubMed  CAS  Google Scholar 

  • Tillotson JK, Lee LF, Kung HJ (1988) Accumulation of viral transcripts coding for a DNA binding protein in Marek’s disease tumor cells. In: Kato S, Horiuchi T, Mikami T, Hirai K (eds) Advance in Marek’s Disease Research Proc. 3rd Intl. Marek’s Disease Symposium. pp 128–134

    Google Scholar 

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ (2000) Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20(7):2517–2528

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Anderson AS, Morgan RW (1996) Marek’s disease virus (MDV) ICP4, pp38, and meq genes are involved in the maintenance of transformation of MDCC-MSB1 MDV-transformed lymphoblastoid cells. J Virol 70(2): 1125–1131

    PubMed  CAS  Google Scholar 

  • Zapp ML, Hope TJ, Parslow TG, Green MR (1991) Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88(17):7734–7738

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Gutsch D, Kenney S (1994) Functional and physical interaction between p53 and BZLF1:implications for Epstein-Barr virus latency. Mol Cell Biol 14(3): 1929–1938

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kung, HJ., Xia, L., Brunovskis, P., Li, D., Liu, JL., Lee, L.F. (2001). Meq: An MDV-Specific bZIP Transactivator with Transforming Properties. In: Hirai, K. (eds) Marek’s Disease. Current Topics in Microbiology and Immunology, vol 255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56863-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56863-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63217-4

  • Online ISBN: 978-3-642-56863-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics