Skip to main content

Genetic Transformation of Pea (Pisum sativum)

  • Chapter
Transgenic Crops II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 47))

Abstract

Several approaches have been used to study plant tissue differentiation processes. Wounding, such as organ explantation in vitro (e.g., Lutova and Zabelina 1988) and exogenous phytohormone application (Gamborg et al. 1974; Kartha et al. 1974; Malmberg 1979; Hussey and Gunn 1984; Rubluo et al. 1984; Ezhova et al. 1985) showed that the main morphogenetic processes were directed by auxins and cytokinins (auxin/cytokinin ratio) and depended on internal factors (plant genotype, age and tissue), which can determine the endogenous phytohormonal balance of plant tissue and its susceptibility to phytohormones. Transformation with Agrobacterium tumefaciens and A. rhizogenes strains, which introduce bacterial phytohormonal genes into the plant genome, allows the study of plant morphogenetic responses to directed changing of the endogenous hormonal balance (Medford et al. 1989; Sitbon et al.1991). Transformation can also be used as an inducing condition to reveal differences between genetic forms in traits which characterize plant hormonal status. This approach reveals forms with atypical responses to transformation, i.e., potential hormonal mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins CA, Smith MC (1997) Genetic transformation and regeneration of legumes. In: Legocki A, Bothe H, Puhler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. NATO ASI Ser G, vol 39. Springer, Berlin Heidelberg New York, pp 283–304

    Chapter  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple sytem for pea transformation Plant Cell Rep 16:513–519

    Google Scholar 

  • Binns AN (1990) Agrobacterium-mediated gene delivery and the biology of host range limitations. Physiol Plant 79:135–139

    Article  CAS  Google Scholar 

  • Borisov AYu (1992) Obtaining and characterization of symbiotic mutants of pea (Pisum sativum L.). PhD Thesis, St Petersburg, 128 pp (in Russian)

    Google Scholar 

  • Brewin NJ, Ambrose MJ, Downie JA (1993) Root nodules, Rhizobium and nitrogen fixation. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford

    Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EY (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87:6708–6712

    Article  PubMed  CAS  Google Scholar 

  • Chernin LS, Avdienco ID (1985) Plasmid phytohormone genes and their role in plant oncogenesis. Russian J Mol Biol 19(4):869–888

    CAS  Google Scholar 

  • Chowrira GM, Akella V, Lurquin PF (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta. Generating transgenic plants without in vitro tissue culture. Mol Biotechnol 3(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • De Kathen A, Jacobsen H-J (1990) Agrobacterium-mediated transformation of Pisum sativum L. using binary and co integrate vectors. Plant Cell Rep 9:276–279

    Article  Google Scholar 

  • De Kathen A, Jacobsen H-J (1993) Transformation of pea (Pisum sativum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 23. Plant protoplasts and genetic engineering IV. Springer, Berlin Heidelberg New York, pp 331–347

    Google Scholar 

  • Ezhova TA, Bagrova AM, Gostimskii SA (1985) Shoot formation in calluses from stem tips, epicotyls, internodes and leaves of different pea genotypes. Russian J Plant Physiol 32:409–414

    Google Scholar 

  • Gamborg OL, Constabel F, Shyluk JP (1974) Organogenesis in callus from shoot apices of Pisum sativum. Physiol Plant 30:125–128

    Article  CAS  Google Scholar 

  • Gostimsky SA, Bagrova AM, Ezhova TA (1985) Revealing and cytological analysis of variability, appearing when plants are regenerating from pea tissue culture. Theses of the Academy of Sciences of the USSR 283(4):1007–1011 (in Russian)

    Google Scholar 

  • Grant JE, Cooper PA, Mcara AE, Rrew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15:254–258

    Article  CAS  Google Scholar 

  • Grant JE, Cooper PA, Gilpin BJ, Hoglund SJ, Reader JK, Pither-Joyce MD, Timmerman-Vaughan GM (1998) Kanamycin is effective for selecting transformed peas. Plant Sci 139:159–164

    Article  CAS  Google Scholar 

  • Griga M, Novak EJ (1990) Pea (Pisum sativum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Legumes and oilseed crops 1. Springer, Berlin Heidelberg New York, pp 65–69

    Google Scholar 

  • Guinel FC, and LaRue TA (1991) Light microscopy study of nodule initiation in Pisum sativum L. cv. Sparkle and its low-nodulating mutant E2 (sym5). Plant Physiol 97:1206–1211

    Article  PubMed  CAS  Google Scholar 

  • Hawes MC, Robbs SL, Pueppke SG (1989) Use of a root trumorigenesis assay to detect genotypic variation in susceptibility of 34 cultivars of Pisum sativum to crown gall. Plant Physiol 90:180–184

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Jacobsen JA, Mahon JD (1989) Specifity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep 8:274–277

    Article  CAS  Google Scholar 

  • Hoekema A, de Pater BS, Fellinger AJ, Hooykaas PJJ, Schilperoort RA (1984) The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-region. EMBO J 3:2485–2490

    PubMed  CAS  Google Scholar 

  • Hussey G, Gunn HV (1984) Plant production in pea (Pisum sativum L. cv. puget and Upton) from long-term callus with superficial meristems Plant Sci Lett 37:143–148

    Article  CAS  Google Scholar 

  • Jacobsen E, Feenstra WJ (1984) A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett 33:337–344

    Article  CAS  Google Scholar 

  • Jacobsen H-J, Kysely W (1985) Induction of in vitro regeneration via somatic embryogenesis in pea (Pisum sativum) and bean (Phaseolus vulgaris). Gen Manipul Plant Breed Proc Int Symp Berl (West), Sept, 1985, pp 445–448

    Google Scholar 

  • Jin S, Komaki T, Gordon MP, Nester EV (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425

    PubMed  CAS  Google Scholar 

  • Joos H, Inze D, Caplan A, Sormann M, Van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32:1057–1067

    Article  PubMed  CAS  Google Scholar 

  • Karssen CM, Groot SPC, Koorneef M (1987) Hormone mutants and seed dormancy in Arabidopsis and tomato. In: Thomas H, Grierson D (eds) Developmental mutants in higher plants. SEB Seminar Series 32. Cambridge Univ Press, Cambridge, pp 119–133

    Google Scholar 

  • Kartha KK, Gamborg OL, Constabel F (1974) Regeneration of pea (Pisum sativum L.) plants from shoot apical meristems. Z Pfianzenphysiol 72:172–176

    Google Scholar 

  • Kislin YeN (1991) Changes of the cytokinin content in the corn leaves damaged by grass aphid Russian. J Plant Physiol Biochem 23:602–605

    CAS  Google Scholar 

  • Klee H, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol Plant Mol Biol 42:529–551

    Article  CAS  Google Scholar 

  • Knauf V, Panagopoulos CG, Nester EW (1982) Genetic factors controlling the host range of Agrobacterium tumefaciens. Phytopathology 72:1545–1549

    Article  Google Scholar 

  • Korber H, Strizhov N, Staiger D, Feldwisch J, Olsson O, Sandberg G, Palme K, Schell J, Koncz C (1991) T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J 10(13):3983–3991

    PubMed  CAS  Google Scholar 

  • Kravchenko LV, Leonova EI, Tikhonovich IA (1994) Effect of root exudates of non-legume plants on the response of auxin production by associated diazotrophs. Microbe Releases 2:267–271

    CAS  Google Scholar 

  • Kunakh VA, Voityuk LI, Alkhimova EG, Alpatova LK (1984) Production of callus tissues and induction of organogenesis in Pisum sativum. Russian J Plant Physiol 31(30):542–548

    CAS  Google Scholar 

  • Kysely W, Jacobsen H-J (1990) Somatic embryogenesis from pea embryos and shoot apices. Plant Cell Tissue Organ Cult 20:7–14

    Article  CAS  Google Scholar 

  • Lowe BA, and Krul WR (1991) Physical, chemical, developmental and genetic factors that modulate the Agrobacterium-Vitis interaction. Plant Physiol 96:121–129

    Article  PubMed  CAS  Google Scholar 

  • Lulsdorf MM, Rempel H, Jackson JA, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep 9:479–483

    Article  CAS  Google Scholar 

  • Lurquin PF, Cai Z, Stiff CM, Fuerst PE (1998) Half-embryo cocultivation technique for estimating the susceptibility of pea and lentil cultivars to Agrobacterium tumefaciens. Mol Biotechnol 9:175–179

    Article  PubMed  CAS  Google Scholar 

  • Lutova LA, Sharova NV (1993) Study of pea response to transformation with Agrobacterium tumefaciens and Agrobacterium rhizogenes strains. Russian J Genet 29:1157–1172

    Google Scholar 

  • Lutova LA, Zabelina YaK (1988) Callus and shoot in vitro formation in different forms of peas Pisum sativum L. Russian J Genet 24:1632–1640

    Google Scholar 

  • Lutova LA, Bondarenko LV, Buzovkina IS, Levashina EA, Tikhodeev ON, Khodzhaiova LT, Sharova NV, Shishkova SO (1994) The influence of plant genotype on regeneration process. Russian J Genet 30:928–936

    Google Scholar 

  • Lutova LA, Sharova NV, Kislin YeN (1996) The role of phytohormones in response to transformation of pea lines, differing in symbiotic characteristics, and their hybrids. Symbiosis 21:61–80

    CAS  Google Scholar 

  • Mallick MA, Rashid A (1989) Induction of multiple shoots from cotyledonary node of grain legumes, pea and lentil. Biol Plant 31:230–232

    Google Scholar 

  • Malmberg RL (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146:143–144

    Article  Google Scholar 

  • Medford J, Horgan R, EI-Sawi Z, Klee HJ (1989) Alterations in endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–404

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays for tobacco tissue cultures. Physiol Plant 115:473–479

    Article  Google Scholar 

  • Nauerby B, Madsen M, Christiansen J, Wyndaele R (1991) A rapid and efficient regeneration system for pea (Pisum sativum) suitable for transformation. Plant Cell Rep 9(12):696–679

    Article  Google Scholar 

  • Nilsson O, Crozier A, Schmuliing T, Sandberg G, Olsson O (1993) Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing A. rhizogenes rolB gene. Plant J 3(5):681–689

    Article  CAS  Google Scholar 

  • Novak K, Skrdleta V, Nemcova M, Lisa L (1993) Behavior of pea nodulation mutants as affected by increasing nitrate level. Symbiosis 15:195–206

    Google Scholar 

  • Olsson O, Sitbon F, Sundberg B, Sandberg G (1990) IAA and IAA-conjugate content of transgenic tobacco plants carrying the iaaM and iaaH genes from Agrobacterium tumefaciens. Physiol Plant 79(2):27

    Google Scholar 

  • Pavlova ZB, Malysheva NV, Kravchenko LV, Chmelev V, Lutova LA (1998) Response of pea genotypes to Agrobacterium as a means of probing their endogenous hormone level. Plant Sci 133:167–176

    Article  CAS  Google Scholar 

  • Prasad P, Jones AM (1991) Identification and characterization of a novel auxin receptor. Plant Physiol Suppl 91(1):17

    Google Scholar 

  • Puonti-Kaerlas J (1991) Tissue culture and genetic transformation of pea (Pisum sativum L.).Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 340, Uppsala, 47 pp

    Google Scholar 

  • Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Transformation of pea (Pisum sativum L.) by Agrobacterium tumefaciens. Plant Cell Rep 8:321–324

    Article  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet 80:246–252

    Article  Google Scholar 

  • Robbs SL, Hawes MC, Lin H-J, Pueppke SG, Smith LY (1991) Inheritance of resistance to crown gall in Pisum sativum. Plant Physiol 95:52–57

    Article  PubMed  CAS  Google Scholar 

  • Rubluo A, Kartha KK, Mroginski LA, Dyck J (1984) Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. J Plant Physiol 117:119–130

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Farmer EE (1991) Oligosaccharide signals in plants: a current assessment. Annu Rev Plant Physiol Mol Biol 42:651–674

    Article  CAS  Google Scholar 

  • Schaerer S, Pilet P-E (1991) Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and rhizogenes. Plant Sci 78:247–258

    Article  Google Scholar 

  • Schroeder D, Schotz AH, Wardley-Richardson J, Spencer D, Higgins ThJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

    Article  PubMed  CAS  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology 12(8):793–796

    Article  CAS  Google Scholar 

  • Sitbon F, Sundberg B, Olsson O, Sandberg G (1991) Free and conjugated indoleacetic acid (IAA) content in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95:480–485

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–628

    Article  Google Scholar 

  • Thomashow MF, Karlinsey JE, Marks JR, Hurlbert RE (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169:3209–3216

    PubMed  CAS  Google Scholar 

  • Tikhonovich IA, Alisova SM, Chetkova SA, Berestetku OA (1987) Enhancement of nitrogen fixation efficiency in pea by selection of lines for the nitrogenase activity. Agric Biol 2:29–34 (in Russian)

    Google Scholar 

  • Tourneur J, Jouanin L, Muller J-F, Caboche M (1985) A genetic approach to the study of the mechanism of action of auxin in tobacco. Susceptibility of an auxin resistant mutant to Agrobacterium transformation. Proc 3rd Annu Symp Plant Biol Keystone, April 1985, New York, pp 791–797

    Google Scholar 

  • Yanofsky M, Lowe B, Montoya A, Rubin R, Krul W, Gordon M, Nester E (1985) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201:237–246

    Article  CAS  Google Scholar 

  • Zubko EI, Kuchuk NV, Tumanova LG, Vironskaya NA, Gleba YuYu (1990) Genetic transformation of pea plants mediated by Agrobacterium tumefaciens. Biopol Cell 6:77–80 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malysheva, N.V. et al. (2001). Genetic Transformation of Pea (Pisum sativum). In: Bajaj, Y.P.S. (eds) Transgenic Crops II. Biotechnology in Agriculture and Forestry, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56901-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56901-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63130-6

  • Online ISBN: 978-3-642-56901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics