Skip to main content

FACS-Gal: Flow Cytometric Assay of β-galactosidase in Viable Cells

  • Chapter
In Living Color

Part of the book series: Springer Lab Manuals ((SLM))

  • 1196 Accesses

Abstract

FACS-Gal is a system that enables the fluorescence activated cell sorter (FACS) to sensitively assay expression of the E. Coli lacZ (β-galactosidase, β-gal) reporter gene, and sort viable cells based on the levels of expression of this enzyme.1,2 The system depends on the enzymatic conversion of the nonfluorescent β-gal substrate fluorescein di-β-galactopyranoside (FDG), into the fluorescent molecule fluorescein. FACS-Gal effectively combines a selectable marker with a reporter gene and in the combination produces novel experimental possibilities. The system is an approach to applying the analytical and sorting capabilities of the FACS to solving problems in molecular biology. FACS-Gal and its variants have been used with cells from a variety of organisms including E. Coli,3 yeast,3 Drosophila,4 transgenic mice,5–7 and most frequently with mammalian cell lines.8–13 For a more extensive list of references using the FACS-Gal assay see.14 This review focuses on the technical basics of FACS-Gal, how to most productively use the system, and the strengths and weaknesses of this system in comparison to other presently available alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nolan GP, Fiering S, Nicolas FF, Herzenberg LA. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on ß-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Science 1988;85:2603–2607.

    CAS  Google Scholar 

  2. Fiering SN, Roederer M, Nolan GP, et al. Improved FACS-Gal: flow cyto metric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 1991;12:291–301.

    Article  PubMed  CAS  Google Scholar 

  3. Nir R, Yisraeli Y, Lamed R, Sahar E. Flow cytometry and sorting of viable bacteria and yeasts according to beta-galactosidase activity. Appl Environ Micro 1990;56:3861–3869.

    CAS  Google Scholar 

  4. Krasnow MA, Cumberledge S, Manning G, et al. Whole animal cell sorting of Drosophila embryos. Science 1991;251:81–5.

    Article  PubMed  CAS  Google Scholar 

  5. Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell 1994;79:875–884.

    Article  PubMed  CAS  Google Scholar 

  6. Robertson G, Garrick D, Wilson M, et al. Age-dependent silencing of globin transgene expression in the mouse. Nucleic Acid Res 1996;24:1465–1471.

    Article  PubMed  CAS  Google Scholar 

  7. Zambrowicz B, Imamoto A, Fiering S, et al. Disruption of overlapping transcripts in the ROSA ßgeo 26 gene trap strain leads to widespread expression of ßgalactosidase in mouse embryos and hematopoietic cells. Proc Nat Acad Science 1997; 94:3789–3794.

    CAS  Google Scholar 

  8. Yancoupolos GD, Nolan GP, Pollock R, et al. A novel fluorescencebased system for assaying and separating live cells according to VDJ recombinase activity. Mol Cell Biol 1990;10:704–1697.

    Google Scholar 

  9. Kerr WG, Nolan GP, Serafini AT, Herzenberg LA. Transcriptionally defective retroviruses containing lacZ for the in situ detection of endogenous genes and developmentally regulated chromatin. Cold Spring Harbor Symp Quant Biol 1989;54 pt 2:767–769.

    Google Scholar 

  10. Kartunnen J, Shastri N. Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc Nat Acad Science 1991;883972–6.

    Google Scholar 

  11. Fiering S, Northrop JP, Nolan GP, et al. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev 1990;4:1823–1834.

    Article  PubMed  CAS  Google Scholar 

  12. Walters MC, Fiering S, Eidemiller J, et al. Enhancers increase the probability but not the level of gene expression. Proc Nat Acad Science 1995;92:7125–7129.

    PubMed  CAS  Google Scholar 

  13. Walters MC, Magis W, Fiering S, et al. Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev 1996;10:185–195.

    Article  PubMed  CAS  Google Scholar 

  14. Roederer M, Fiering S, Herzenberg LA. FACS-Gal: Flow cytometric analysis and sorting of cells expressing reporter gene constructs. Methods: A Companion to Methods in Enzymology 1991;2(3):248–260.

    Article  CAS  Google Scholar 

  15. Lupton SD, Brunton LL, Kalberg VA, Overell RW. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol 1991;11:3374–8.

    PubMed  CAS  Google Scholar 

  16. Rotman B. Measurement of activity of single molecules of β-D-galactosidase. Proc Nat Acad Science 1961;47:1981–1991.

    CAS  Google Scholar 

  17. Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 1991;5:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  18. Van den Heuvel S, Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993;262:2050–2054.

    Article  PubMed  CAS  Google Scholar 

  19. Arndt-Jovin DJ, Jovin TM. Analysis and sorting of living cells according to deoxyribonucleic acid content. Jour of Histochem Cytochem 1977;25:585–589.

    Article  CAS  Google Scholar 

  20. Moynahan ME, Akgun E, Jasin M. A model for testing recombinogenic sequences in the mouse germline. Hum Mol Gen 1996;5:875–886.

    Article  PubMed  CAS  Google Scholar 

  21. Poot M, Arttamankul S. Verapamil inhibition of enzymatic product efflux leads to improved detection of β-galactosidase activity in lacZ transfected cells. Cytometry 1997;in press.

    Google Scholar 

  22. Zhang G, Gurtu V, Kain SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophy Res Com 1996;227:707–11.

    Article  CAS  Google Scholar 

  23. Anderson MT, Tjioe IM, Lorincz MC, et al. Simultaneous fluorescenceactivated cell sorter analysis of two distinct transcriptional elements with a single cell using engineered green fluorescent proteins. Proc Natl Acad Science 1996;93:8508–8511.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiering, S. (2000). FACS-Gal: Flow Cytometric Assay of β-galactosidase in Viable Cells. In: Diamond, R.A., Demaggio, S. (eds) In Living Color. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57049-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57049-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62978-5

  • Online ISBN: 978-3-642-57049-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics