Skip to main content

The Role of Nicotinic Acetylcholine Receptors in Cognitive Function

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

Nicotine delivery via either cigarette smoking, nicotine injections, or transdermal nicotine patches has been shown in a variety of studies to improve cognitive function including attention, learning, and memory. Nicotine and other nicotinic drugs have been found to improve cognitive function in humans as well as experimental animal subjects (BRIONI et al. 1997; DECKER et al. 1995; LEVIN 1992, 1996; LEVIN and SIMON 1998). Like any drug effect, nicotinic actions on cognitive function are limited and some studies have not found nicotine-induced improvement (for a review, see HEISHMAN et al. 1994). The specific nature of the expression of nicotine-induced cognitive improvement gives insight into the critical neural systems involved. This research is vital for the further development of nicotinic-based therapeutics for cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulla FA, Bradbury E, Calaminici MR, Lippiello PM, Wonnacott S, Gray JA, Sinden JD (1996) Relationship between up-regulation of nicotine binding sites in rat brain and delayed cognitive enhancement observed after chronic or acute nicotinic receptor stimulation. Psychopharmacology 124:323–331

    Article  PubMed  CAS  Google Scholar 

  • Abdulla FA, Calaminici M, Wonnacott S, Gray JA, Sinden JD, Stephenson JD (1995) Sensitivity of rat frontal cortical neurones to nicotine is increased by chronic administration of nicotine and by lesions of the nucleus basalis magnocellularis: comparison with numbers of [3H]nicotine binding sites. Synapse 21:281–288

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Alkondon M, Pereira EFR, Castro NG, Schrattenholz A, Barbosa CTF, Bonfante-Cabarcas R, Aracava Y, Eisenberg HM, Maelicke A (1997) Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136

    PubMed  CAS  Google Scholar 

  • Alder LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiat 32:607–616

    Article  Google Scholar 

  • Alder LE, Hoffer LJ, Wiser A, Freedman R (1993) Cigarette smoking normalizes auditory physiology in schizophrenics. Am J Psychiatry 150:1856–1861

    Google Scholar 

  • Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons: 1. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473

    PubMed  CAS  Google Scholar 

  • Andersson K, Fuxe K, Agnati LF (1981) Effects of a single injection of nicotine on the ascending dopaminergic pathways in rats. Evidence for increased dopamine turnover in the mesostriatal and mesolimbic dopamine neurons. Acta Physiol Scand 112:345–347

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Sanberg PR, Sengstock GJ (1995a) Nicotine enhances the learning and memory of aged rats. Pharmacol Biochem Behav 52:517–523

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Sengstock GJ, Sanberg PR, Kern WR (1995b) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Flicker C (1987) Cholinergic psychopharmacology: An integration of human and animal research on memory. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 219–232

    Google Scholar 

  • Bickford PC, Wear KD (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats. Brain Res 705:235–240

    Article  PubMed  CAS  Google Scholar 

  • Blozovski D (1983) Deficits in passive avoidance learning in young rats following mecamylamine injections in the hippocampo-entorhinal area. Exp Brain Res 50:442–448

    Article  PubMed  CAS  Google Scholar 

  • Bovet-Nitti F (1966) Facilitation of simultaneous visual discrimination by nicotine in the rat. Psychopharmolog 10:59–66

    Article  CAS  Google Scholar 

  • Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (-)-nicotine and novel cholinergic channel modulators. Advances in Pharmacology 37:153–214

    Article  PubMed  CAS  Google Scholar 

  • Broersen LM, Heinsbroek RPW, de Bruin JPC, Uylings HBM, Olivier B (1995) The role of the medial prefrontal cortex of rats in short-term memory functioning: Further support for involvement of cholinergic, rather than dopaminergic mechanisms. Brain Res 674:221–229

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ (1991) Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiol Aging 12:233–238

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry AV, Marsh KC, Decker MW, Arneric SP (1995) Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement. Psychopharmacology 120:256–266

    Article  PubMed  CAS  Google Scholar 

  • Bushneil PJ, Oshiro WM, Padnos BK (1997) Detection of visual signals by rats: Effects of chlordiazepoxide and cholinergic and adrenergic drugs on sustained attention. Psychopharmacology 134:230–241

    Article  Google Scholar 

  • Chambers RA, Moore J, McEvoy JP, Levin ED (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–594

    Article  PubMed  CAS  Google Scholar 

  • Chiappeta L, Jarvik ME (1969) Comparison of learning impairment and activity depression produced by two classes of cholinergic blocking agents. Arch Int Pharmacodyn 179:161–166

    Google Scholar 

  • Clarke PBS, Hommer DW, Pert A, Skirboll LR (1985) Electrophysiological actions of nicotine on substantia nigra single units. Br J Pharmacol 85:827–835

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Pert A (1985) Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res 348:355–358

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Pert CB, Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Res 323:390–395

    Article  PubMed  CAS  Google Scholar 

  • Colrain IM, Mangan GL, Pellett OL, Bates TC (1992) Effects of post-learning smoking on memory consolidation. Psychopharmacology 108:448–451

    Article  PubMed  CAS  Google Scholar 

  • Conners CK, Levin ED, Sparrow E, Hinton S, Ernhardt D, Meck WH, Rose JE, March J (1996) Nicotine and attention in adult ADHD. Psychopharmacol Bull 32:67–73

    PubMed  CAS  Google Scholar 

  • Curzon P, Brioni JD, Decker MW (1996) Effect of intraventricular injections of dihydro-beta-erythroidine (DHβE) on spatial memory in the rat. Brain Res 714:185–191

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Brioni JD, Bannon AW, Arneric SP (1995) Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS therapeutics — minireview. Life Sci 56:545–570

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Curzon P, Brioni JD, Arneric SP (1994) Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol 261:217–222

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572:281–285

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Majchrzak MJ, Arneric SP (1993) Effects of lobeline, a nicotinic receptor agonist, on learning and memory. Pharmacol Biochem Behav 45:571–576

    Article  PubMed  CAS  Google Scholar 

  • Diltz SL, Berry CA (1967) Effect of cholinergic drugs on passive avoidance in the mouse. I Pharmacol. Exp Ther 158:279–285

    Google Scholar 

  • Elrod K, Buccafusco JJ, Jackson WJ (1988) Nicotine enhances delayed matching-to-sample performance by primates. Life Sci 43:277–287

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL, Turpin M, Oliver L, Jennings C (1993) Caffeine and nicotine improve visual tracking by rats — A comparison with amphetamine, cocaine and apomorphine. Psychopharmacology 110:169–176

    Article  PubMed  CAS  Google Scholar 

  • Felix R, Levin ED (1997) Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 81:1009–10017

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Sledge K, Hefner M, Robichaud RC (1971) Learning impairment after three classes of agents which modify cholinergic function. Arch Int Pharmacodyn 193:226–235

    PubMed  CAS  Google Scholar 

  • Granon S, Poucet B, Thinusblanc C, Changeux JP, Vidal C (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection and effortful processing. Psychopharmacology 119:139–144

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Mitchell SN, Joseph MH, Grigoryan GA, Bawe S, Hodges H (1994) Neurochemical mechanisms mediating the behavioral and cognitive effects of nicotine. Drug Dev Res 31:3–17

    Article  CAS  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan G, Hodges H, Mitchell S, Sinden JD, Gray JA (1996) 6-OHDA lesions of the nucleus accumbens accentuate memory deficits in animals with lesions to the forebrain cholinergic projection system: effects of nicotine administration on learning and memory in the water maze. Neurobiol Learn Mem 65:135–153

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan GA, Mitchell SN, Hodges H, Sinden JD, Gray JA (1994a) Are the cognitive-enhancing effects of nicotine in the rat with lesions to the forebrain cholinergic projection system mediated by an interaction with the noradrenergic system?. Pharmacol Biochem Behav 49:511–521

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan GA, Peters S, Gray JA, Hodges H (1994b) Interactions between the effects of propranolol and nicotine on radial maze performance of rats with lesions of the forebrain cholinergic projection system. Beh Pharm 5:265–280

    CAS  Google Scholar 

  • Hamid S, Dawe GS, Gray JA, Stephenson JD (1997) Nicotine induces long-lasting potentiation in the dentate gyrus of nicotine-primed rats. Neurosci Res 29:81–85

    Article  PubMed  CAS  Google Scholar 

  • Hatsukami DK, Hughes JR, Pickens RW, Svikis D (1984) Tobacco withdrawal symptoms: An experimental analysis. Psychopharmacol 84:231–236

    Article  CAS  Google Scholar 

  • Heishman SJ, Taylor RC, Henningfield JE (1994) Nicotine and smoking: A review of effects on human performance. Exper Clin Psychopharm 2:1–51

    Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  • Jackson WJ, Elrod K, Buccafusco JJ (1989) Delayed matching-to-sample in monkeys as a model for learning and memory deficits: role of brain nicotinic receptors. In: Meyer EM, Simpkins JW, Yamamoto J (ed) Novel Approaches to the Treatment of Alzheimer’s Disease. Plenum Publishing Corporation, pp 39–52

    Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R, Warburton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108:485–494

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Whitehouse PJ, Martino-Barrows AM, Marcus K, Price DL (1987) Muscarinic and nicotinic cholinergic binding sites in Alzheimer’s disease. Brain Res 436:62–68

    Article  PubMed  CAS  Google Scholar 

  • Kerr JS, Sherwood N, Hindmarch I (1991) Separate and combined effects of the social drugs on psychomotor performance. Psychopharmacology 104:113–119

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Levin E (1996) Nicotinic, muscarinic and dopaminergic actions in the ventral hippocampus and the nucleus accumbens: Effects on spatial working memory in rats. Brain Res 725:231–240

    PubMed  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer disease, attention, and the cholinergic system. Alz Dis Assoc Disorder 9:43–49

    Google Scholar 

  • Le Houezec J, Halliday R, Benowitz NL, Callaway E, Naylor H, Herzig K (1994) A low dose of subcutaneous nicotine improves information processing in non-smokers. Psychopharmacology 114:628–634

    Article  PubMed  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144

    Article  PubMed  Google Scholar 

  • Levin E, Conners C, Silva D, Hinton S, Meck W, March J, Rose J (1998a) Transdermal nicotine effects on attention. Psychopharmacology. in press

    Google Scholar 

  • Levin E, Kaplan S, Boardman A (1997) Acute nicotine interactions with nicotinic and muscarinic antagonists: Working and reference memory effects in the 16-arm radial maze. Behav Pharmacol 8:236–242

    PubMed  CAS  Google Scholar 

  • Levin E, Kim P, Meray R (1996a) Chronic nicotine effects on working and reference memory in the 16-arm radial maze: Interactions with Dl agonist and antagonist drugs. Psychopharmacology 127:25–30

    Article  PubMed  CAS  Google Scholar 

  • Levin E, Wilson W, Rose J, McEvoy J (1996b) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436

    Article  PubMed  CAS  Google Scholar 

  • Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology 108:417–431

    Article  PubMed  CAS  Google Scholar 

  • Levin ED (1996) Nicotinic agonist and antagonist effects on memory. Drug Develop Res 38:188–195

    Article  CAS  Google Scholar 

  • Levin ED (1997) Chronic haloperidol administration does not block acute nicotineinduced improvements in radial-arm maze performance in the rat. Pharmacol Biochem Behav 58:899–0.2

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Bettegowda C, Gordon J, Blosser J (1998b) AR-R 17779, an a7 nicotinic agonist improves learning and memory in rats. Soc Neurosci Abs 24:183

    Google Scholar 

  • Levin ED, Bettegowda C, Weaver T, Christopher NC (1998c) Nicotine-dizocilpine interactions and working and reference memory performance of rats in the radial-arm maze. Pharmacol Biochem Behav 61:335–340

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Briggs SJ, Christopher NC, Auman JT (1994) Working memory performance and cholinergic effects in the ventral tegmental area and substantia nigra. Brain Res 657:165–170

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Briggs SJ, Christopher NC, Rose JE (1992) Persistence of chronic nicotine-induced cognitive facilitation. Behav Neural Biol 58:152–158

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Briggs SJ, Christopher NC, Rose JE (1993a) Chronic nicotinic stimulation and blockade effects on working memory. Behav Pharmacol 4:179–182

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Christopher NC, Briggs SJ, Auman JT (1996c) Chronic nicotine-induced improvement of spatial working memory and D2 dopamine effects in rats. Drug Dev Res 39:29–35

    Article  CAS  Google Scholar 

  • Levin ED, Christopher NC, Briggs SJ, Rose JE (1993b) Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Cog Brain Res 1:137–143

    Article  CAS  Google Scholar 

  • Levin ED, Christopher NC, Weaver T, Moore J, Brucato F (1998d) Ventral hippocampal ibotenic acid lesions block chronic nicotine-induced spatial working memory improvement in rats. Cog Brain Res in press

    Google Scholar 

  • Levin ED, Conners CK, Sparrow E, Hinton S, Meck W, Rose JE, Ernhardt D, March J (1996d) Nicotine effects on adults with attention-deficit/hyperactivity disorder. Psychopharmacology 123:55–63

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Damaj MI, Glassco W, May EL, Martin BR (1998e) Bridged nicotine, isonicotine and norisonicotine effects on working memory performance of rats in the radial-arm maze. Drug Dev Res in press

    Google Scholar 

  • Levin ED, Lee C, Rose JE, Reyes A, Ellison G, Jarvik M, Gritz E (1990a) Chronic nicotine and withdrawal effects on radial-arm maze performance in rats. Behav Neural Biol 53:269–276

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, McGurk SR, Rose JE, Butcher LL (1989a) Reversal of a mecamylamine-induced cognitive deficit with the D2 agonist, LY 171555. Pharmacol Biochem Behav 33:919–922

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, McGurk SR, South D, Butcher LL (1989b) Effects of combined muscarinic and nicotinic blockade on choice accuracy in the radial-arm maze. Behav Neural Biol 51:270–277

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rose JE (1990) Anticholinergic sensitivity following chronic nicotine administration as measured by radial-arm maze performance in rats. Behav Pharmacol 1:511–520

    Article  PubMed  Google Scholar 

  • Levin ED, Rose JE (1991) Nicotinic and muscarinic interactions and choice accuracy in the radial-arm maze. Brain Res Bull 27:125–128

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rose JE (1992) Cognitive effects of Dl and D2 interactions with nicotinic and muscarinic systems. In: Levin ED, Decker MW, Butcher LL (eds) Neuro-transmitter Interactions and Cognitive Function. Berkhäuser, Boston, pp 144–158

    Chapter  Google Scholar 

  • Levin ED, Rose JE (1995) Acute and chronic nicotinic interactions with dopamine systems and working memory performance. In: Lajtha A, Abood L (eds) Functional Diversity of Interacting Receptors. The New York Academy of Sciences, New York, pp 218–221

    Google Scholar 

  • Levin ED, Rose JE, Abood L (1995) Effects of nicotinic dimethylaminoethyl esters on working memory performance of rats in the radial-arm maze. Pharmacol Biochem Behav 51:369–373

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rose JE, McGurk SR, Butcher LL (1990b) Characterization of the cognitive effects of combined muscarinic and nicotinic blockade. Behav Neural Biol 53:103–112

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Russell RW (1992) Nicotinic-muscarinic interactions in cognitive function. In: Levin ED, Decker MW, Butcher LL (eds) Neurotransmitter Interactions and Cognitive Function. Berkhäuser, Boston, pp 183–195

    Chapter  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB, Conners CK (1998f) Nicotine effects and attention deficit disorder. In: Newhouse P, Piasecki M (eds) Nicotine: Psychotropic and Psychotoxic Effects. John Wiley, New York, pp in press

    Google Scholar 

  • Levin ED, Simon BB, Conners CK (1998g) Transdermal nicotine treatment of attention deficit/hyperactivity disorder. In: Arneric SP, Brioni JD (eds) Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities. John Wiley, New York, pp in press

    Google Scholar 

  • Levin ED, Toll K, Chang G, Christopher NC, Briggs SJ (1996e) Epibatidine, a potent nicotinic agonist: effects on learning and memory in the radial-arm maze. Medicinal Chem Res 6:543–554

    CAS  Google Scholar 

  • Levin ED, Torry D (1996) Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology 123:88–97

    Article  PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Hefti F, Felix D, Huwyler T, Melamed E, Schlumpf M (1982) Stimulation of nigrostriatal dopamine neurons by nicotine. Neuropharmacology 21:963

    Article  PubMed  CAS  Google Scholar 

  • Lippiello PM, Bencherif M, Gray JA, Peters S, Grigoryan G, Hodges H, Collins AC (1996) RJR-2403: a nicotinic agonist with CNS selectivity II. In vivo characterization. J Pharmacol Exp Ther 279:1422–9

    PubMed  CAS  Google Scholar 

  • McGehee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  PubMed  CAS  Google Scholar 

  • McGurk SR, Levin ED, Butcher LL (1989a) Nicotinic-dopaminergic relationships and radial-arm maze performance in rats. Behav Neural Biol 52:78–86

    Article  PubMed  CAS  Google Scholar 

  • McGurk SR, Levin ED, Butcher LL (1989b) Radial-arm maze performance in rats is impaired by a combination of nicotinic-cholinergic and D2 dopaminergic drugs. Psychopharmacology 99:371–373

    Article  PubMed  CAS  Google Scholar 

  • Meguro K, Yamaguchi S, Arai H, Nakagawa T, Doi C, Yamada M, Ikarashi Y, Maruyama Y, Sasaki H (1994) Nicotine improves cognitive disturbance in senescence-accelerated mice. Pharmacol Biochem Behav 49:769–772

    Article  PubMed  CAS  Google Scholar 

  • Meyer EM, de Fiebre CM, Hunter BE, Simpkins CE, Frauworth N, de Fiebre NE (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res 31:127–134

    Article  CAS  Google Scholar 

  • Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138:266–274

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SN, Smith KM, Joseph MH, Gray JA (1993) Increases in tyrosine hydroxylase messenger RNA in the locus coeruleus after a single dose of nicotine are followed by time-dependent increases in enzyme activity and noradrenaline release. Neuroscience 56:989–997

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1995) Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology 118:82–92

    Article  PubMed  CAS  Google Scholar 

  • Newhouse P, Potter A, Corwin J (1996a) Acute administration of the cholinergic channel activator ABT-418 improves learning in Alzheimer’s disease. Society for Research on Nicotine and Tobacco. Washington, DC, Poster A39

    Google Scholar 

  • Newhouse P, Potter A, Corwin J (1996b) Effects of nicotinic cholinergic agents on cognitive functioning in Alzheimer’s and Parkinson’s disease. Drug Develop Res 38:278–289

    Article  CAS  Google Scholar 

  • Newhouse PA, Potter A, Levin ED (1997) Nicotinic systems and Alzheimer’s disease: Implications for therapeutics. Drugs and Aging 11:206–228

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Tariot PN, Blumhardt CL, Weingartner H, Mellow A, Murphy DL (1988) Intravenous nicotine in Alzheimer’s disease: A pilot study. Psychopharmacology 95:171–175

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Thompson K, Tariot PN, Weingartner H, Mueller ER, Cohen RM, Murphy DL (1986) Intravenous nicotine in a patient with Alzheimer’s disease. Am J Psychiat 143:1494–1495

    PubMed  CAS  Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced number of 3H-nicotine and 3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Yamamoto T, Watanabe S (1993) Blockade of hippocampal nicotinic receptors impairs working memory but not reference memory in rats. Pharmacol Biochem Behav 45:89–93

    Article  PubMed  CAS  Google Scholar 

  • Pauly JR, Stitzel JA, Marks MJ, Collins AC (1989) An autoradiographic analysis of cholinergic receptors in mouse brain. Brain Res Bull 22:453–459

    Article  PubMed  CAS  Google Scholar 

  • Peeke SC, Peeke HVS (1984) Attention, memory, and cigarette smoking. Psychopharmacology 84:205–216

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Smith CJ (1987) Nicotinic receptor abnormalities in Alzheimer’s and Parkinson’s disease. J Neurol Neurosurg Psychiatry 50:806–809

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoll M, Lena C, Bessis A, Lallemand Y, Lenovere N, Vincent P, Pich EM, Brulet P, Changeux JP (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Pomerleau OF, Downey KK, Stelson FW, Pomefleau CS (1996) Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity disorder. J Subst Abuse 7:373–378

    Article  Google Scholar 

  • Pritchard WS, Robinson JH, Guy TD (1992) Enhancement of continuous performance task reaction time by smoking in non-deprived smokers. Psychopharmacology 108:437–442

    Article  PubMed  CAS  Google Scholar 

  • Provost SC, Woodward R (1991) Effects of nicotine gum on repeated administration of the Stroop test. Psychopharmacology 104:536–540

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Murray TK, Johnson JA, Baker HF (1986) Learning impairment following lesion of basal nucleus of Meynert in the marmoset: Modification by cholinergic drugs. Brain Res 376:108–116

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen M, Sirvio J, Riekkinen P (1993) Pharmacological consequences of nicotinergic plus serotonergic manipulations. Brain Res 622:139–146

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen M, Tolonen R, Riekkinen P (1994a) Interaction between 5-HT(l A) and nicotinic cholinergic receptors in the regulation of water maze navigation behavior. Brain Res 649:174–180

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen P, Sirvio J, Riekkinen M (1994b) Serotonin depletion decreases the therapeutic effect of nicotine, but not THA, in medial septal-lesioned rats. Brain Res 662:95–102

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen PJ, Sirviö J, Aaltonen M, Riekkinen P (1990) Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning. Pharmacol. Biochem. Behav 37:405–410

    CAS  Google Scholar 

  • Riekkinen PJ, Sirvio J, Valjakka A, Miettinen R, Riekkinen P (1991) Pharmacological consequences of cholinergic plus serotonergic manipulations. Brain Res 552:23–26

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Iversen SD (1989) Comparison of cognitive facilitation by cholinomimetic drugs in two primate memory tests. J Psychopharmacol 3:52P

    Google Scholar 

  • Rusted J, Eaton-Williams P (1991) Distinguishing between attentional and amnestic effects in information processing: the separate and combined effects of scopolamine and nicotine on verbal free recall. Psychopharmacology 104:363–366

    Article  PubMed  CAS  Google Scholar 

  • Rusted J, Graupner L, Warburton D (1995) Effects of post-trial administration of nicotine on human memory: evaluating the conditions for improving memory. Psychopharmacology 119:405–413

    Article  PubMed  CAS  Google Scholar 

  • Rusted JM, Graupner L, Tennant A, Warburton DM (1998) Effortful processing is a requirement for nicotine-induced improvements in memory. Psychopharmacology 138:362–368

    Article  PubMed  CAS  Google Scholar 

  • Sahakian B, Jones G, Levy R, Gray J, Warburton D (1989) The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of Alzheimer type. Br J Psychiat 154:797–800

    Article  CAS  Google Scholar 

  • Sahakian BJ, Jones GMM (1991) The effects of nicotine on attention, information processing, and working memory in patients with dementia of the Alzheimer type. In: Adlkofer F, Thruau K (eds) Effects of Nicotine on Biological Systems. Birkhauser Verlag, Basel, pp 623–230

    Chapter  Google Scholar 

  • Schwartz RD (1986) Autoradiographic distribution of high affinity muscarinic and nicotinic cholinergic receptors labeled with [3H]acetylcholine in rat brain. Life Sci 38:2111–2119

    Article  PubMed  CAS  Google Scholar 

  • Sherwood N, Kerr JS, Hindmarch I (1992) Psychomotor performance in smokers following single and repeated doses of nicotine gum. Psychopharmacology 108:432–436

    Article  PubMed  CAS  Google Scholar 

  • Socci DJ, Sanberg PR, Arendash GW (1995) Nicotine enhances Morris water maze performance of young and aged rats. Neurobiol Aging 16:857–860

    Article  PubMed  CAS  Google Scholar 

  • Terry AV, Buccafusco JJ, Jackson WJ (1993) Scopolamine reversal of nicotine enhanced delayed matching-to-sample performance in monkeys. Pharmacol Biochem Behav 45:925–929

    Article  PubMed  CAS  Google Scholar 

  • Terry AVB, JJ, Decker, MW (1997) Cholinergic channel activator, ABT-418, enhances delayed-response accuracy in rats. Drug Dev Res 40:304–312

    Google Scholar 

  • Turchi J, Holley LA, Sarter M (1995) Effects of nicotinic acetylcholine receptor ligands on behavioral vigilance in rats. Psychopharmacology 118:195–205

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, Changeux JP (1989) Pharmacological profile of nicotinic acetylcholine receptors in the rat prefrontal cortex: an electrophysiological study in a slice preparation. J Neurosci 29:261–270

    Article  CAS  Google Scholar 

  • Vidal C, Changeux JP (1993) Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex invitro. Neuroscience 56:23–32

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, Changeux JP (1996) Neuronal nicotinic acetylcholine receptors in the brain. News Physiol Sci 11:202–208

    CAS  Google Scholar 

  • Warburton DM, Arnall C (1994) Improvements in performance without nicotine withdrawal. Psychopharmacology 115:539–542

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton DM (1983) Smoking, nicotine and human performance. Pharmacol Ther 21:189–208

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton DM, Matz B (1983) Effects of nicotine on stimulus sensitivity and response bias in a visual vigilance task. Neuropsychobiology 9:41–44

    Article  PubMed  CAS  Google Scholar 

  • West R, Hack S (1991) Effect of cigarettes on memory search and subjective ratings. Pharmacol Biochem. Behav 38:281–286

    CAS  Google Scholar 

  • White H, Levin ED (1998) Chronic four week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology in press

    Google Scholar 

  • Widzowski DV, Cregan E, Bialobok P (1994) Effects of nicotinic agonists and antagonists on spatial working memory in normal adult and aged rats. Drug Dev Res 31:24–31

    Article  CAS  Google Scholar 

  • Williams DG (1980) Effects of cigarette smoking on immediate memory and performance in different kinds of smoker. Br J Psychol 71:83–90

    Article  PubMed  CAS  Google Scholar 

  • Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, Mcfalls E, Kovera C, Mccarten JR (1995) Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:509–514

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS, Li YT, Kern WR (1994) A nicotinic agonist (GTS-21). eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levin, E.D. (2000). The Role of Nicotinic Acetylcholine Receptors in Cognitive Function. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics