Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 147))

Abstract

The 5-HT3 receptor (5-HT3R) is a ligand-gated ion channel gated by the neurotransmitter serotonin (5-HT) and belonging to the superfamily of ligand-gated ion channels, a group that includes nicotinic acetylcholine (ACh), GABA, and glycine receptor channels (MARiCQ et al. 1991). The activation of the 5-HT3R opens a cationic ion channel that depolarizes the membrane, thereby activating a rapid excitatory response in a variety of central and peripheral nervous system (CNS and PNS) preparations. Thus the 5-HT3R is unique from the other classes of 5-HT receptors which all couple to GTP binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkadhi KA, Salgado-Commissariat D, Hogan YH, Akpaudo SB (1996) Induction and maintenance of ganglionic long-term potentiation require activation of 5hydroxytryptamine (5-HT3) receptors. J Physiol 496:479–489

    PubMed  CAS  Google Scholar 

  • Amin J, Weiss DS (1993) GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366:565569

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Naylor RJ, Tyers MB (1989) 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 338:762–763

    Article  PubMed  CAS  Google Scholar 

  • Bartrup JT, Newberry NR (1996) Electrophysiological consequences of ligand binding to the desensitized 5-HT3 receptor in mammalian NG108–15 cells. J Physiol 490:108–15

    PubMed  CAS  Google Scholar 

  • Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ, Blackburn TP (1995) Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol Pharmacol 48:1054–1062

    PubMed  CAS  Google Scholar 

  • Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809

    PubMed  CAS  Google Scholar 

  • Boddeke HWGM, Meigel I, Boeijinga P, Arbuckle J, Docherty RJ (1996) Modulation by calcineurin of 5-HT3 receptor function in NG108–15 neuroblastoma X glioma cells. Brit J Pharmacol 118:108–15

    Article  CAS  Google Scholar 

  • Boess FG, Beroukhim R, Martin IL (1995) Ultrastructure of the 5-hydroxytryptamine3 receptor. J Neurochem 64:1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Boess FG, Steward LJ, Steele JA, Liu D, Reid J, Glencorse TA, Martin IL (1997) Analysis of the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: Importance of glutamate 106. Neuropharmacol 36:637–647

    Article  CAS  Google Scholar 

  • Bonhaus DW, Wong EH, Stefanich E, Kunysz EA, Eglen RM (1993) Pharmacological characterization of 5-hydroxytryptamine3 receptors in murine brain and ileum using the novel radioligand [3H]RS-42358–197: evidence for receptor heterogeneity. J Neurochem 61:42358–197

    Article  PubMed  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PP, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol 25:563–576

    Article  CAS  Google Scholar 

  • Brown AM, Hope AG, Lambert JJ, Peters JA (1998) Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3„). J Physiol 507:653665

    Google Scholar 

  • Butler A, Elswood CJ, Burridge J, Ireland SJ, Bunce KT, Kilpatrick GJ, Tyers MB (1990) The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol 101:591–598

    Article  PubMed  CAS  Google Scholar 

  • Cohen ML (1992) 5-HT3 receptors in the periphery. In: Hamon M (ed) Central and peripheral 5-HT3 receptors, Academic Press, London, England, pp. 19–32

    Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397:359–363

    Article  PubMed  CAS  Google Scholar 

  • Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang JY, Lazure C, Chretien M, Changeux JP (1988) Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochem 27:2346–2357

    Article  CAS  Google Scholar 

  • Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339:706–709

    Article  PubMed  CAS  Google Scholar 

  • Downie DL, Hope AG, Lambert JJ, Peters JA, Blackburn TP, Jones BJ (1994) Pharmacological characterization of the apparent splice variants of the murine 5-HT3 R-A subunit expressed in Xenopus laevis oocytes. Neuropharmacol 33:473482

    Google Scholar 

  • Eisel¨¦ JL, Bertrand S, Galzi JL, Devillers-Thi¨¦ry A, Changeux JP, Bertrand D (1993) XXXChimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366:479–483

    PubMed  Google Scholar 

  • Emerit MB, Martres MP, Miguel MC, El Mestikawy S, Hamon M (1995) Differentiation alters expression of the two splice variants of the serotonin 5-HT3 receptor-A mRNA in NG108–15 cells. J Neurochem 65:108–15

    Article  PubMed  CAS  Google Scholar 

  • Engel SR, Lyons CR, Allan AM (1998) 5-HT, receptor over-expression decreases ethanol self administration in transgenic mice. Psychopharmacology (Berl) 140: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Fletcher S, Barnes NM (1997) Purification of 5-hydroxytryptamine3 receptors from porcine brain. Brit J Pharmacol 122:655–662

    Article  CAS  Google Scholar 

  • Fletcher S, Barnes NM (1998) Desperately seeking subunits: Are native 5-HT3 receptors really homomeric complexes? TIPS 19:212–215

    PubMed  CAS  Google Scholar 

  • Freund TF, Guly¨¢s AI, Acs¨¢dy L, Gores T, T¨®th K (1990) Serotonergic control of the hippocampus via local inhibitory interneurons. PNAS 87:8501–8505

    Article  PubMed  CAS  Google Scholar 

  • Gaddum JHR, Picarelli ZP (1957) Two kinds of tryptamine receptor. Brit J Pharmacol 12:323–328

    PubMed  CAS  Google Scholar 

  • Gill CH, Peters JA, Lambert JJ (1995) An electrophysiological investigation of the properties of a murine recombinant 5-HT3 receptor stably expressed in HEK 293 cells. Brit J Pharmacol 114:1211–1221

    Article  CAS  Google Scholar 

  • Gilon P, Yakel JL (1995) Activation of 5-HT3 receptors expressed in Xenopus oocytes does not increase cytoplasmic Ca’ levels. Receptors Channels 3:83–88

    PubMed  CAS  Google Scholar 

  • Glaum SR, Brooks PA, Spyer KM, Miller RJ (1992) 5-Hydroxytryptamine-3 receptors modulate synaptic activity in the rat nucleus tractus solitarius in vitro. Brain Res 589:62–68

    Article  PubMed  CAS  Google Scholar 

  • Glitsch M, Wischmeyer E, Karschin A (1996) Functional characterization of two 5-HT3 receptor splice variants isolated from a mouse hippocampal cell line. Pflügers Arch 432:134–143

    Article  PubMed  CAS  Google Scholar 

  • Grant KA (1995) The role of 5-HT3 receptors in drug dependence. Drug Alcohol Depen 38:155–171

    Article  CAS  Google Scholar 

  • Green WN, Millar NS (1995) Ion-channel assembly. TINS 18:280–287

    PubMed  CAS  Google Scholar 

  • Greenshaw AJ (1993) Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. TIPS 14:265–270

    PubMed  CAS  Google Scholar 

  • Hargreaves AC, Lummis SCR, Taylor CW (1994) Cap` permeability of cloned and native 5-hydroxytryptamine type 3 receptors. Mol Pharmacol 46:1120–1128

    PubMed  CAS  Google Scholar 

  • Hope AG, Downie DL, Sutherland L, Lambert JJ, Peters JA, Burchell B (1993) Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Europ J Pharmacol 245:187–192

    Article  CAS  Google Scholar 

  • Hussy N, Lukas W, Jones KA (1994) Functional properties of a cloned 5hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors. J Physiol 481:311–323

    PubMed  CAS  Google Scholar 

  • Jackson MB, Yakel JL (1995) The 5-HT3 receptor channel. Annu Rev Physiol 57:447–468

    Article  PubMed  CAS  Google Scholar 

  • Jenkins A, Franks NP, Lieb WR (1996) Actions of general anaesthetics on 5-HT3 receptors in N1E-115 neuroblastoma cells. Brit J Pharmacol 117:1507–1515

    Article  CAS  Google Scholar 

  • Jones S, Yakel JL (1998) Ca’ influx through voltage-gated Cat` channels regulates 5HT3 receptor channel desensitization in rat glioma X mouse neuroblastoma hybrid NG108–15 cells. J Physiol 510:108–15

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Thesleff S (1957) A study of the `desensitization’ produced by acetylcholine at the motor end-plate. J Physiol 138:63–80

    PubMed  CAS  Google Scholar 

  • Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: A patch-clamp study. J Neurophysiol 71:19351947

    Google Scholar 

  • Kidd EJ, Laporte AM, Langlois X, Fattaccini CM, Doyen C, Lombard MC, Gozlan H, Hamon M (1993) 5-HT3 receptors in the rat central nervous system are mainly located on nerve fibres and terminals. Brain Res 612:289–298

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Butler A, Burridge J, Oxford AW (1990) 1-(m-Chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist. Eur J Pharmacol 182:193–197

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Tyers MB (1992) The pharmacological properties and functional roles of central 5-HT3 receptors. In: Hamon M (ed) Central and peripheral 5-HT3 receptors, Academic Press, London, England, pp. 33–57

    Google Scholar 

  • Kooyman AR, van Hooft JA, Vijverberg HPM (1993a) 5-Hydroxyindole slows desensitization of the 5-HT3 receptor-mediated ion current in N1E-115 neuroblastoma cells. Brit J Pharmacol 108:287–289

    Article  CAS  Google Scholar 

  • Kooyman AR, Zwart R, Vijverberg HPM (1993b) Tetraethylammonium ions block 5HT3 receptor-mediated ion current at the agonist recognition site and prevent desensitization in cultured mouse neuroblastoma cells. Europ J Pharmacol 246:247–254

    Article  CAS  Google Scholar 

  • Kooyman AR, van Hooft JA, Vanderheijden PML, Vijverberg HPM (1994) Competitive and non-competitive effects of 5-hydroxyindole on 5-HT3 receptors in N1E-115 neuroblastoma cells. Brit J Pharmacol 112:541–546

    Article  CAS  Google Scholar 

  • Kriegler S, Sudweeks S, Yakel JL (1999) Communication: The nicotinic a4 receptor subunit contributes to the lining of the ion channel pore when expressed with the 5-HT3 receptor subunit.: 3934–3936. J Biol Chem 274: 3934–3936

    Article  PubMed  CAS  Google Scholar 

  • Lankiewicz S, Lobitz N, Wetzel CHR, Rupprecht R, Gisselmann G, Hatt H (1998) Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. Mol Pharmacol 53:202–212

    PubMed  CAS  Google Scholar 

  • Laporte AM, Kidd EJ, Verg¨¦ D, Gozlan H, Hamon M (1992) Autoradiographic mapping of central 5-HT3 receptors. In: Hamon M (ed) Central and peripheral 5-HT3 receptors, Academic Press, London, England, pp. 157–187

    Google Scholar 

  • Machu TK, Harris RA (1994) Alcohols and anesthetics enhance the function of 5hydroxytryptamine3 receptors expressed in Xenopus laevis oocytes. J Pharmacol Exp Ther 271:898–905

    PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    Article  PubMed  CAS  Google Scholar 

  • Maura G, Andrioli GC, Cavazzani P, Raiteri M (1992) 5-Hydroxytryptamine3 receptors sited on cholinergic axon terminals of human cerebral cortex mediate inhibition of acetylcholine release. J Neurochem 58:2334–2337

    Article  PubMed  CAS  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotoningated ion channels. J Neurophysiol 78:2493–2502

    PubMed  CAS  Google Scholar 

  • Mienville JM (1991) Comparison of fast responses to serotonin and 2-methyl-serotonin in voltage-clamped N1E-115 neuroblastoma cells. Neurosci Letts 133:41–44.

    Article  CAS  Google Scholar 

  • Miguel MC, Emerit MB, Gozlan H, Hamon M (1991) Involvement of tryptophan residue(s) in the specific binding of agonists/antagonists to 5-HT3 receptors in NG108–15 clonal cells. Biochem Pharmacol 42:108–15

    Article  Google Scholar 

  • Miguel MC, Emerit MB, Gingrich JA, Nosjean A, Hamon M, El Mestikawy S (1995) Developmental changes in the differential expression of two serotonin 5-HT3 receptor splice variants in the rat. J Neurochem 65:475–483

    Article  Google Scholar 

  • Miyake A, Mochizuki S, Takemoto Y, Akuzawa S (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol 48:407–416

    PubMed  CAS  Google Scholar 

  • Morain P, Abraham C, Portevin B, de Nanteuil G (1994) Biguanide derivatives: Agonist pharmacology at 5-hydroxytryptamine type 3 receptors in vitro. Mol Pharmacol 46:732–742

    PubMed  CAS  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

    PubMed  CAS  Google Scholar 

  • Mukerji J, Haghighi A, S¨¦gu¨¦la P (1996) Immunological characterization and trans-membrane topology of 5-hydroxytryptamine3 receptors by functional epitope tagging. J Neurochem 66:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Rond¨¦ P, Spier AD, Lummis SCR, Nichols RA (1998) Co-localization of 5-HT3 serotonin and alpha4 nicotinic receptor subunits on mammalian brain nerve terminals. Soc Neuro Abstr 24:1819

    Google Scholar 

  • Neijt HC, to Duits IJ, Vijverberg HPM (1988) Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacol 27:301–307

    Article  CAS  Google Scholar 

  • Neijt HC, Plomp JJ, Vijverberg HPM (1989) Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells. J Physiol 411:257–269

    PubMed  CAS  Google Scholar 

  • Newberry NR, Cheshire SH, Gilbert MJ (1991) Evidence that the 5-HT3 receptors of the rat, mouse and guinea-pig superior cervical ganglion may be different. Brit J Pharmacol 102:615–620

    Article  CAS  Google Scholar 

  • Nichols RA, Mollard P (1996) Direct observation of serotonin 5-HT3 receptor-induced increases in calcium levels in individual brain nerve terminals. J Neurochem 67:581–592

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer MI, Lummis SCR (1998) Different efficacy of specific agonists at 5-HT3 receptor splice variants: the role of the extra six amino acid segment. Brit J Pharmacol 123:661–666

    Article  CAS  Google Scholar 

  • Parker RMC, Bentley KR, Barnes NM (1996) Allosteric modulation of 5-HT3 receptors: Focus on alcohols and anaesthetic agents. TIPS 17:95–99

    PubMed  CAS  Google Scholar 

  • Paudice P, Raiteri M (1991) Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens. Brit J Pharmacol 103:1790–1794

    Article  CAS  Google Scholar 

  • Peters JA, Malone HM, Lambert JJ (1991) Ketamine potentiates 5-HT3 receptor-mediated currents in rabbit nodose ganglion neurones. Brit J Pharmacol 103: 1623–1625

    Article  CAS  Google Scholar 

  • Reznic J, Staubli U (1997) Effects of 5-HT3 receptor antagonism on hippocampal cellular activity in the freely moving rat. J Neurophysiol 77:517–521

    PubMed  CAS  Google Scholar 

  • Richardson BP, Engel G (1986) The pharmacology and function of 5-HT3 receptors.TINS 9:424–428

    CAS  Google Scholar 

  • Roerig B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17:83538362

    Google Scholar 

  • Rond¨¦ P, Nichols RA (1997) 5-HT3 receptors induce rises in cytosolic and nuclear calcium in NG108–15 cells via calcium-induced calcium release. Cell Calcium 22:108–15

    Article  Google Scholar 

  • Rond¨¦ P, Nichols RA (1998) High calcium permeability of serotonin 5-HT3 receptors on presynaptic nerve terminals from rat striatum. J Neurochem 70:10941103

    Google Scholar 

  • Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136

    PubMed  CAS  Google Scholar 

  • Schmieden V, Kuhse J, Betz H (1993) Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA. Science 262:256–258

    Article  PubMed  CAS  Google Scholar 

  • Schulte MK, Bloom KE, White MM (1995) Evidence for the involvement of tryptophan in the binding of curare to 5HT-3 receptors. Soc Neuro Abstr 21:55

    Google Scholar 

  • Shao XM, Yakel JL, Jackson MB (1991) Differentiation of NG108–15 cells alters channel conductance and desensitization kinetics of the 5-HT3 receptor. J Neurophysiol 65:108–15

    PubMed  CAS  Google Scholar 

  • Spier AD, Lummis SCR (2000) The role of tryptophan residues in the 5-Hydroxytryptamine3 receptor ligand binding domain. J Bol Chem 275:5620–5625

    Article  CAS  Google Scholar 

  • Stäubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15:2445–2452

    PubMed  Google Scholar 

  • Steward LJ, Boess FG, Steele JA, Phipps BP, Liu D, Martin IL (1996) The importance of the amino acid phenylalanine 107 for function and ligand recognition at the 5-HT3 receptor. Brit J Pharamacol 119:290P

    Article  CAS  Google Scholar 

  • Sugita S, Shen KZ, North RA (1992) 5-Hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron 8:199–203

    Article  PubMed  CAS  Google Scholar 

  • Traynelis SF, Mott DD (1996) Recombinant 5-HT3 receptor activation and desensitization. Soc Neuro Abstr 22:1781

    Google Scholar 

  • Uetz P, Abdelatty F, Villarroel A, Rappold G, Weiss B, Koenen M (1994) Organisation of the murine 5-HT3 receptor gene and assignment to human chromosome 11. FEBS Letts 339:302–306

    Article  CAS  Google Scholar 

  • van Hooft JA, van der Haar E, Vijverberg HPM (1997a) Allosteric potentiation of the 5-HT3 receptor-mediated ion current in N1E-115 neuroblastoma cells by 5hydroxyindole and analogues. Neuropharmacol 36:649–653

    Article  Google Scholar 

  • van Hooft JA, Kooyman AR, Verkerk A, van Kleef RGDM, Vijverberg HPM (1994) Single 5-HT3 receptor-gated ion channel events resolved in N1E-115 mouse neuroblastoma cells. Biochem Biophys Res Comm 199:227–233

    Article  PubMed  Google Scholar 

  • van Hooft JA, Kreikamp AP, Vijverberg HPM (1997b) Native serotonin 5-HT3 receptors expressed in Xenopus oocytes differ from homopentameric 5-HT3 receptors. J Neurochem 69:1318–1321

    Article  PubMed  Google Scholar 

  • van Hooft JA, Spier AD, Yakel JL, Lummis SCR, Vijverberg HPM (1998) Promiscuous coassembly of serotonin 5-HT3 and nicotinic a4 receptor subunits into Ca’ permeable ion channels. PNAS 95:11456–11461

    Article  PubMed  Google Scholar 

  • van Hooft JA, Vijverberg HPM (1995) Phosphorylation controls conductance of 5-HT3 receptor ligand-gated ion channels. Receptors Channels 3:7–12

    PubMed  Google Scholar 

  • Vandenberg RJ, Handford CA, Schofield PR (1992) Distinct agonist-and antagonist-binding sites on the glycine receptor. Neuron 9:491–496

    Article  PubMed  CAS  Google Scholar 

  • Werner P, Kawashima E, Reid J, Hussy N, Lundström K, Buell G, Humbert Y, Jones KA (1994) Organization of the mouse 5-HT3 receptor gene and functional expression of two splice variants. Mol Brain Res 26:233–241

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL, Jackson MB (1988) 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1:615–621

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL, Shao XM, Jackson MB (1991) Activation and desensitization of the 5-HT3 receptor in a rat glioma x mouse neuroblastoma hybrid cell. J Physiol 436:293308

    Google Scholar 

  • Yakel JL, Lagrutta A, Adelman JP, North RA (1993) Single amino acid substitution affects desensitization of the 5-HT3 receptor expressed in Xenopus oocytes. PNAS 90:5030–5033

    Article  PubMed  CAS  Google Scholar 

  • Yan D, Schulte MK, Bloom KE, White MM (1999) Structural features of the ligand-binding domain of the serotonin 5HT3 receptor. J Biol Chem 274:55375541

    Google Scholar 

  • Yang J (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neu-roblastoma N18 cells. J Gen Physiol 96:1177–1198

    Article  CAS  Google Scholar 

  • Yang J, Mathie A, Hill B (1992) 5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons. J Physiol 448:237–256

    PubMed  CAS  Google Scholar 

  • Zhang L, Oz M, Weight FF (1995) Potentiation of 5-HT3 receptor-mediated responses by protein kinase C activation. Neuroreport 6:1464–1468

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Lovinger DM (1996) Pharmacologic characteristics of potentiation of 5-HT3 receptors by alcohols and diethyl ether in NCB-20 neuroblastoma cells. J Pharmacol Exp Ther 278:732–740

    PubMed  CAS  Google Scholar 

  • Zhou Q, Verdoorn TA, Lovinger DM (1998) Alcohols potentiate the function of 5-HT3 receptor-channels on NCB-20 neuroblastoma cells by favouring and stabilizing the open channel state. J Physiol 507:335–352

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yakel, J.L. (2000). The 5-HT3 Receptor Channel: Function, Activation and Regulation. In: Endo, M., Kurachi, Y., Mishina, M. (eds) Pharmacology of Ionic Channel Function: Activators and Inhibitors. Handbook of Experimental Pharmacology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57083-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57083-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63030-9

  • Online ISBN: 978-3-642-57083-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics