Skip to main content

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 31))

  • 134 Accesses

Abstract

Invasive Gram-negative bacterial infections often result in the development of septic shock. This syndrome is always serious, and often fatal. While the best estimates of the incidence of Gram-negative sepsis in the United States are almost a decade old, Gram-negative sepsis may account for as many as 50000 deaths annually [1, 2]. Once patients exhibit the septic shock syndrome, almost 40% will die. A major challenge is identifying drug targets that can be manipulated therapeutically in order to reduce the high mortahty associated with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469

    PubMed  CAS  Google Scholar 

  2. Martin MA (1991) Epidemiology and dinical aspects of Gram-negative sepsis. Infect Dis Clin North Am 5:739–752

    PubMed  CAS  Google Scholar 

  3. Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    Article  PubMed  CAS  Google Scholar 

  4. Rietschel ET, Brade H (1992) Bacterial endotoxins. Sci Am 267:26–31

    Article  Google Scholar 

  5. Strain SM, Fesik SW, Armitage IM (1983) Characterization of lipopolysaccharide from a heptoseless mutant of Escherichia coli by carbon-43 nuclear magnetic resonance. J Biol Chem 258:2906–2910

    PubMed  CAS  Google Scholar 

  6. Imoto M, Kusumoto S, Shiba T, et al (1983) Chemical structure of E. coli Lipid A: Linkage site of acyl groups in the disaccharide backbone. Tetrahedron Lett 24:4017–4020

    Article  CAS  Google Scholar 

  7. Haworth R, Piatt N, Keshav S, et al (1997) The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 186:1431–1439

    Article  PubMed  CAS  Google Scholar 

  8. Hailman E, Lichenstein HS, Wurfel MM, et al (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD 14. J Exp Med 179:269–277

    Article  PubMed  CAS  Google Scholar 

  9. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS-binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

  10. Wright SD, Ramos RA, Hermanowski-Vosatka AH, Rockwell P, Detmers PA (1991 ) Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: Dependence on lipopolysaccharide binding protein and CD14. J Exp Med 173:1281–1286

    Article  PubMed  CAS  Google Scholar 

  11. Lynn WA, Raetz CR, Qureshi N, Golenbock DT (1991) Lipopolysaccharide-induced stimulation of GDI lb/CD 18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J Immunol 147:3072–3079

    PubMed  CAS  Google Scholar 

  12. Kitchens RL, Ulevitch RJ, Munford RS (1992) Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 176:485–494

    Article  PubMed  CAS  Google Scholar 

  13. Kirkland T N, Finley F, Leturcq D, et al (1993) Analysis of Hpopolysaccharide binding by CD 14. J Biol Chem 268:24818–24823

    PubMed  CAS  Google Scholar 

  14. Bazil V, Baudys M, Hilgert I, et al (1989) Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD 14. Mol Immunol 26: 657–662

    Article  PubMed  CAS  Google Scholar 

  15. Frey EA, Miller DS, Jahr TG, et al (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176:1665–1671

    Article  PubMed  CAS  Google Scholar 

  16. Arditi M, Zhou J, Dorio R, Rong GW, Goyert SM, Kim KS (1993) Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun 61:3149–3156

    PubMed  CAS  Google Scholar 

  17. Haziot A, Rong GW, Silver J, Goyert SM (1993) Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol 151:1500–1507

    PubMed  CAS  Google Scholar 

  18. Pugin J, Schurer MC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharidebinding protein and soluble CD 14. Proc Natl Acad Sci USA 90:2744–2748

    Article  PubMed  CAS  Google Scholar 

  19. Lee J-D, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ (1992) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med 175:1697–1705

    Article  PubMed  CAS  Google Scholar 

  20. Golenbock D, Liu Y, Millham F, Freeman M, Zoeller R (1993) Surface expression of human CD 14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin. J Biol Chem 268:22055–22059

    PubMed  CAS  Google Scholar 

  21. Viriyakosol S, Kirkland TN (1995) A region of human CD14 required for lipopolysaccharide binding. J Biol Chem 270:361–368

    Article  PubMed  CAS  Google Scholar 

  22. Haziot A, Ferrero E, Konigen F, et al (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414

    Article  PubMed  CAS  Google Scholar 

  23. Haziot A, Ferrero E, Lin XY, Stewart CL, Goyert SM (1995) CD 14-deficient mice are exquisitely insensitive to the effects of LPS. Prog Clin Biol Res 392:349–351

    PubMed  CAS  Google Scholar 

  24. Tobias PS, Soldau K, Ulevitch RJ (1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med 164:777–793

    Article  PubMed  CAS  Google Scholar 

  25. Mathison JC, Tobias PS, Wolfson E, Ulevitch RJ (1992) Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol 149:200–206

    PubMed  CAS  Google Scholar 

  26. Hailman E, Vasselon T, Kelley M, et al (1996) Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol 156:4384–4390

    PubMed  CAS  Google Scholar 

  27. Park CT, Wright SD (1996) Plasma lipopolysaccharide-binding protein is found associated with a particle containing apolipoprotein A-I, phospholipid, and factor H-related proteins. J Biol Chem 271:18054–18060

    Article  PubMed  CAS  Google Scholar 

  28. Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutrahzation of LPS. J Exp Med 180:1025–1035

    Article  PubMed  CAS  Google Scholar 

  29. Skarnes RC (1966) The inactivation of endotoxin after interaction with certain proteins of normal serum. Ann NY Acad Sci 133:644–662

    Article  PubMed  CAS  Google Scholar 

  30. Skarnes RC (1968) In vivo interaction of endotoxin with a plasma lipoprotein having esterase activity. J Bacteriol 95:2031–2034

    PubMed  CAS  Google Scholar 

  31. Munford RS, Hall CL, Lipton JM, Dietschy JM (1982) Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J Clin Invest 70:877–888

    Article  PubMed  CAS  Google Scholar 

  32. Ulevitch RJ, Johnston AR, Weinstein DB (1979) New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest 64:1516–1524

    Article  PubMed  CAS  Google Scholar 

  33. Gallay P, Barras C, Tobias PS, Calandra T, Glauser MP, Heumann D (1994) Lipopolysaccharide (LPS)-binding protein in human serum determines the tumor necrosis factor response of monocytes to LPS. J Infect Dis 170:1319–1322

    Article  PubMed  CAS  Google Scholar 

  34. Galvano SE, Thompson WA, Marra MN, et al (1994) Changes in polymorphonuclear leukocyte surface and plasma bactericidal/permeability-increasing protein and plasma lipopolysaccharide binding protein during endotoxemia or sepsis. Arch Surg 129:220–226

    Google Scholar 

  35. Myc A, Buck J, Gonin J, Reynolds B, Hammerling U, Emanuel D (1997) The level of lipopoly-saccharide-binding protein is significantly increased in plasma in patients with the systemic inflammatory response syndrome. Clin Diagn Lab Immunol 4:113–116

    PubMed  CAS  Google Scholar 

  36. Martin TR, Rubenfeld GD, Ruzinski JT, et al (1997) Relationship between soluble CD 14, lipopolysaccharide binding protein, and the alveolar inflammatory response in patients with acute respiratory distress syndrome. Am J Respir Grit Care Med 155:937–944

    CAS  Google Scholar 

  37. Ingalls RR, Golenbock DT (1995) CDllc/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med 181:1473–1479

    Article  PubMed  CAS  Google Scholar 

  38. Ingalls RR, Arnaout MA, Golenbock DT (1997) Outside-in signaling by lipopolysaccharide through a tailless integrin. J Immunol 159:433–438

    PubMed  CAS  Google Scholar 

  39. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA (1989) Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 170:1231–1241

    Article  PubMed  CAS  Google Scholar 

  40. Ingalls RR, Monks BG, Savedra R Jr, et al (1998) GDI 1/CD18 and CD14 share a common lipid A signaling pathway. J Immunol 161:5413–5420

    PubMed  CAS  Google Scholar 

  41. Lynn WA, Golenbock DT (1992) Lipopolysaccharide antagonists. Immunol Today 13: 271–276

    Article  PubMed  CAS  Google Scholar 

  42. Christ W, Asano O, Robidoux AL, et al (1995) E5531, a pure endotoxin antagonist of high potency. Science 268:80–83

    Article  PubMed  CAS  Google Scholar 

  43. Delude R, Savedra R, Zhao H, et al (1995) CD 14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Nad Acad Sci USA 92:9288–9292

    Article  CAS  Google Scholar 

  44. Kitchens RL, Munford RS (1995) Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem 270:9904–9910

    Article  PubMed  CAS  Google Scholar 

  45. Pugin J, Heumann ID, Tomasz A, et al (1994) CD 14 is a pattern recognition receptor. Immunity 1:509–516

    Article  PubMed  CAS  Google Scholar 

  46. Savedra R Jr, Delude RL, Ingalls RR, Fenton M J, Golenbock DT (1996) Mycobacterial lipoarabinomannan recognition requires a receptor hat shares components of the endotoxin signaling system. J Immunol 157:2549–2554

    PubMed  CAS  Google Scholar 

  47. Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Ann Rev Cell Dev Biol 12:393–416

    Article  CAS  Google Scholar 

  48. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95:588–593

    Article  PubMed  CAS  Google Scholar 

  49. Yang RB, Mark MR, Gray A, et al (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288

    Article  PubMed  CAS  Google Scholar 

  50. Kirschning CJ, Wesche H, Ayres TM, Rothe M (1998) Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188:2091–2097

    Article  PubMed  CAS  Google Scholar 

  51. Poltorak A, He X, Smirnova I, et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: Mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  52. Qureshi ST, Lariviere L, Leveque G, et al (1999) Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

  53. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  54. O’Neill LA, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 63: 650–657

    PubMed  Google Scholar 

  55. Delude RL, Yoshimura A, Ingalls RR, Golenbock DT (1998) Construction of a lipopolysaccharide reporter cell line and its use in identifying mutants defective in endotoxin, but not TNF-alpha, signal transduction. J Immunol 161:3001–3009

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lien, E., Heine, H., Golenbock, D.T. (2002). LPS Receptors. In: Marshall, J.C., Cohen, J. (eds) Immune Response in the Critically Ill. Update in Intensive Care Medicine, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57210-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57210-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42589-2

  • Online ISBN: 978-3-642-57210-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics