Skip to main content

Role of Inflammatory Response and Thrombosis in Acute Coronary Syndromes

  • Chapter
Coronary Circulation and Myocardial Ischemia

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 32))

  • 93 Accesses

Abstract

Atherosclerotic involvement of coronary arteries is the underlying process in the majority of ischemic heart diseases. Atherosclerotic lesions may cause stable syndromes of ischemia by means of direct luminal arterial narrowing (stable lesions) or unstable or acute ischemic syndromes by inducing intraluminal thrombus formation (unstable lesions). Clinical consequences of coronary lesions will depend on the degree and acuteness of blood flow obstruction, the duration of decreased perfusion and the relative myocardial oxygen demand at the time of blood flow obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362:801–809

    PubMed  CAS  Google Scholar 

  2. Sciler C, Hess OM, Buechi M, Suter TM, Krayenbuehl HP. Influence of serum cholesterol and other coronary risk factors on vasomotion of angiographically normal coronary arteries. Circulation 1993, 88:2139–2148

    Google Scholar 

  3. Vita JA, Treasure CB, Nabel EG, et al: Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990, 81:491–497

    PubMed  CAS  Google Scholar 

  4. Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet 1997, 350 (suppl I): 9–13

    Google Scholar 

  5. Tell GS, Polak JF, Ward BJ, Kittner SJ, Savage PJ, Robbins J. Relation of smoking with carotid arterial wall thickness and stenosis in older adults: The Cardiovascular Healt Study. Circulation 1994, 90:2905–2908

    PubMed  CAS  Google Scholar 

  6. Fabricant CG, Knook L, Gillespie JH. Virus-induced cholesterol crystals. Science 1973 1973, 181:566–567

    PubMed  CAS  Google Scholar 

  7. Fabricant CG, Fabricant J, Litrenta MM, Minick CR. Virus-induced atherosclerosis. J Exp Med 1978, 148:335–340

    PubMed  CAS  Google Scholar 

  8. Hajjar DP. Viral pathogenesis of atherosclerosis. Am J Pathol 1991, 139:1195–1211

    PubMed  CAS  Google Scholar 

  9. Vallance P, Collier J, Bhagat K. Infection, inflammation and infarction: does acute endothelial dysfunction provide a link?. Lancet 1997, 349:1391–1392

    PubMed  CAS  Google Scholar 

  10. Cook PJ, Lip GYH. Chlamydia pneumoniae and atherosclerotic vascular disease. Q J Med 1996, 89:727–735

    CAS  Google Scholar 

  11. Gupta S, Gamm AJ. Chlamydia pneumoniae and coronary heart disease. BMJ 1997, 514:1778–1779

    Google Scholar 

  12. Lip GYH, Beevers DG. Can we treat coronary artery disease with antibiotics?. Lancet 1997, 350:378–379

    PubMed  CAS  Google Scholar 

  13. Libby P, Egan D, Skarlatos S. Roles of infectious agents in atherosclerosis and restenosis. An assessment of the evidence and need for future research. Circulation 1997, 96:4095–4103

    PubMed  CAS  Google Scholar 

  14. Gibson CM, Diaz L, Kandarpa K, et al: Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Atherosc Thromb 1993, 13:310–315

    CAS  Google Scholar 

  15. Asakura T, Karino T: Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 1990, 66:1045–1066

    PubMed  CAS  Google Scholar 

  16. Tjotta E. The distribution of atheromatosis in the coronary arteries. J Atheroscler Res 1963; 3: 253–261

    PubMed  CAS  Google Scholar 

  17. Sakata N, Takebayashi S. Locallzation of atherosclerotic lesion in tha curving sites of human internal carotid arteries. Biorheology 1988, 25:567–578

    PubMed  CAS  Google Scholar 

  18. Smedby O, Johanson J, Molgaard J, Osen JA, Waldius G, Erikson U. Predilection of atherosclerosis for the inner curvature in femoral artery. Arteriorscler Tromb Vase Biol 1995, 15:912–917

    CAS  Google Scholar 

  19. Krams R, Wentzel JJ, Oomen JAF, Schuurbiers JCH, de Feyter PJ, Serruys PW, Slager CJ. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Arterioscler Thromb Vase Biol 1997, 17:2061–2065

    CAS  Google Scholar 

  20. Levesque MJ, Liepsch D, Moravec S, Nerem RM. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 1986, 6:220–229

    PubMed  CAS  Google Scholar 

  21. Reidy MA, Bowyer D: Scanning electron microscopy of arteries: the morphology of aortic endothelium in hemodynamically stressed areas associated with branches. Atherosclerosis 1977; 26: 181–194

    PubMed  CAS  Google Scholar 

  22. A definition of advances types of atherosclerotic lesions and a historical classification of atherosclerosis: A report from the Committe of Vascular Lesions of the Council of Arteriosclerosis, American Heart Association. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schawrtz CJ, Wagner WD, Wissler RW. Circulation 1995, 92:1355–1374

    PubMed  CAS  Google Scholar 

  23. Stary HC: Composition and classification of human atherosclerotic lesions. Virchows Archiv A Pathol Anat 1992, 421:277–290

    CAS  Google Scholar 

  24. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979, 76:333–337

    PubMed  CAS  Google Scholar 

  25. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 1994, 14:230–234

    PubMed  CAS  Google Scholar 

  26. Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronaries in acute myocardial infarction and sudden coronary death. Circulation 1989, 80:1747–1756

    PubMed  CAS  Google Scholar 

  27. MacIsaac AI, Thomas JD, Topol EJ: Toward the quiescent coronary plaque. J Am Coll Cardiol 1993, 22:1228–1241

    PubMed  CAS  Google Scholar 

  28. Richardson RD, Davies MJ, Born GVR: Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989, 2:941–944

    PubMed  CAS  Google Scholar 

  29. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 1993, 87:1179–1187

    PubMed  CAS  Google Scholar 

  30. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix-degrading metalloproteinases and implications for plaque ruprure. Circulation 1995, 92:1565–1569

    PubMed  CAS  Google Scholar 

  31. Moreno P, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994, 90:775–778

    PubMed  CAS  Google Scholar 

  32. Henney AM, Wakeley PR, Davies MJ, Foster K, Hembry R, Murphy G, Humpries SE. Location of stromelysin gene in atherosclerotic plaques using in situ hybridization. Proc Natl Acad Sci USA 1991, 88:8154–8158

    PubMed  CAS  Google Scholar 

  33. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW. Interstitial collagenase (mmp-1) expression in human carotid atherosclerosis. Circulation 1995, 92:1393–8

    PubMed  CAS  Google Scholar 

  34. Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kd gelatinase in human coronary atherosclerotic lesions: association of active enzyme synthesis with unstable angina. Circulation 1995, 91:2125–2131

    PubMed  CAS  Google Scholar 

  35. Galis ZS, Sukhova GK, Libby P. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. Methodol Commun 1995, 9:974–980

    CAS  Google Scholar 

  36. Werb Z, Mainardi CL, Vater CA, Harris EDJ. Endogenous activation of latent collagenase by reunathoid sinovial cells:evidence for a role of plasminogen activator. N Engl J Med 1997, 296:1017–23

    Google Scholar 

  37. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Cir Res 1995, 77:863–868

    CAS  Google Scholar 

  38. DeClerk YA, Darville MI, Eeckhout Y, Rousseau GG. Characterization of the promoter on the gene encoding human tissue inhibitor of metalloproteinases-2 (TIMP-2). Gene 1994, 139:185–191

    Google Scholar 

  39. Ceng Y, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vivo stimulation with interferon-g, tumor necrosis factor-a, and interleukin-1b. Arterioscler Thromb Vasc Biol 1996, 16:19–27

    Google Scholar 

  40. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995, 95:2266–2274

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Geng Y, Libby P. Evidence for apoptosis in advanced human atheroma: colocalization with interleukin-1b-converting enzyme. Am J Pathophysiol 1995, 147:251–266

    CAS  Google Scholar 

  42. Bennett MR, Evan GI, Schwartz SM. Apoptosis of rat vascular smooth muscel cells is regulated by p53-dependent and-independent pathways. Circ Res 1995, 77:266–273

    PubMed  CAS  Google Scholar 

  43. Kuller L, Tracy R, Shaten J, Meilahn E, for the MRFIT Research Group. Relatioship of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Am J Epidemiol 1996, 144:537–547

    PubMed  CAS  Google Scholar 

  44. Ridker P, Cushman M, Stampfer M, Tracy R, Hennekens C. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Eng J Med 1997, 336:973–979

    CAS  Google Scholar 

  45. Koening W, Froehlich M, Sund M, Doering A, Fischer H, Loewel H, Hutchinson W, Pepys M. C-reactive protein (CRP) predicts risk of coronary heart disease (CHD) in healthy middleaged men: results from the MONICA-Augsburg cohort study, 1984/85-1992. Circulation 1997, 96 (suppl I):I–99. Abstract

    Google Scholar 

  46. Tracy R, Lemaitre R, Psaty B, Ives D, Evans R, Cushman M, Meilahn E, Kuller L. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly: results from the Cardiovascular Health Study and the Rural Health Promotion Orojet. Arterioscler Thromb Vasc Biol 1997, 17:1121–1127

    PubMed  CAS  Google Scholar 

  47. Ernst E, Resch K. Fibrinogen as cardiovascular a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 1993, 118:956–963

    PubMed  CAS  Google Scholar 

  48. Folsom A, Wu K, Rosamond W, Sharrett A, Chambless L. Hemostatic factors and incidence of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 1996, 93:662. Abstract

    Google Scholar 

  49. Tracy R, Arnold A, Ettinger W, Freid L, Meilahn E, Savage P. Coagulation factor VIII is associated with incident cardiovascular disease and death in the elderly: the Cardiovascular Health Study. Circulation 1996, 94 (supp I):I–457. Abstract

    Google Scholar 

  50. Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C, Blomback M, Wiman B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987, 2:3–9

    PubMed  CAS  Google Scholar 

  51. Biasucci L, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi A, Ciliberto G, Maseri A. Elevated levels of interleukin-6 in unstable angina. Circulation 1996, 94:874–877

    PubMed  CAS  Google Scholar 

  52. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risk of future myocardial infarction in apparently healthy men. Lancet 1998, 351:88–92

    PubMed  CAS  Google Scholar 

  53. Hwang S-J, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases. The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997, 96:4219–25

    PubMed  CAS  Google Scholar 

  54. Badimon L, Badimon JJ, Turitto VT, Vallabhajosula S, Fuster V. Platelet thrombus formation on collagen type I: a model of deep vessel injury: influence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 1988, 78:1431–1442

    PubMed  CAS  Google Scholar 

  55. Badimon L, Badimon JJ: Mechanism of arterial thrombosis in nonparallel streamlines: platelet thrombi grow at the apex of stenotic severily injured vessel wall: experimental study in the pig model. J Clin Invest 1898, 84:1134–1144

    Google Scholar 

  56. Ambrose JA, Tannenbaum MA, Alexopolous D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988, 12:56–62

    PubMed  CAS  Google Scholar 

  57. Little WC, Constantinescu M, Applequte RJ, Kutcher MA, Burrows MT, Kahl FR, Sontamore WP. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988, 76:1157–1166

    Google Scholar 

  58. Dacanay S, Kennedy HL, Uretz E, Parrillo JE, Klein LW. Morphological and quantitative angiographic analyses of progression of coronary stenoses. A comparison of Q-wave and non-Q-wave myocardial infarction. Circulation 1994, 90:1739–1746

    PubMed  CAS  Google Scholar 

  59. Fernández-Ortiz A, Badimon JJ, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimon L. Characterization of the relative thrombogenicity of atherosclerotic plaque components: Implications for consequences of plaque rupture. J Am Coll Cardiol 1994, 23:1562–1569

    PubMed  Google Scholar 

  60. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989, 86:2839–2843

    PubMed  CAS  Google Scholar 

  61. Moreno PR, Bernardi VH, Lopez-Cuellar J, Murcia AM, Palacios IF, Gold HK, Mehran R, Sharma SK, Nemerson Y, Fuster V, Fallon JT. Macrophages, smooth muscel cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996, 94:3090–3097

    PubMed  CAS  Google Scholar 

  62. Kaikita K, Ogawa H, Yasue H, Takeya M, Takahashi K, Saito T, Hayasaki K, Horiuchi K, Takizawa A, Kamikubo Y, Nakamura S. Tissue factor expresion on macrophages in coronary plaques in patients with unstable angina. Arterioscler Thromb Vase Biol 1997, 17: 2232–2237

    CAS  Google Scholar 

  63. Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997. 95:594–599

    PubMed  CAS  Google Scholar 

  64. Fuster V: Lewis A Conner Memorial Lecture. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation 1994, 90:2126–2146

    PubMed  CAS  Google Scholar 

  65. Mailhac A, Badimon JJ, Fallon JT, Fernandez-Ortiz A, Meyer B, Chesebro JH, Fuster V, Badimon L. Effect of an eccentric severe stenosis on fibri(ogen) deposition on severily damaged vessel wall in arterial thrombosis. Relative contribution of fibri(ogen) and platelets. Circulation 1994, 90:988–996

    PubMed  CAS  Google Scholar 

  66. Turitto VT, Baungartner HR: Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Mierovase Res 1979, 17:38–54

    CAS  Google Scholar 

  67. Davies SW, Marchart B, Lyons JP, Timmis AD. Irregular coronary lesion morphology after thrombosis predicts early clinical instability. J Am Coll Cardiol 1991, 18:669–674

    PubMed  CAS  Google Scholar 

  68. Hackett D, Davie G, Ghierehia S, Maseri A. Intermittent coronary occlusion in acute myocardial infarction: value of combined thrombolytic and vasodilatory therapy. N Eng J Med 1987, 317:1055–9

    CAS  Google Scholar 

  69. Ohman EM, Topol EJ, Califf RM, et al: An analysis of the cause of early mortality after administration of thrombolytic therapy. Cor Art Dis 1993, 4:957–964

    CAS  Google Scholar 

  70. Lassila R, Badimon JJ, Vallabhajosula S, Badimon L. Dynamic monitoring of platelet deposition on severily damaged vessel wall in flowing blood: effect of different stenosis on thrombus growth. Arterioelerosis 1990, 10:306–315

    CAS  Google Scholar 

  71. Meyer BJ, Badimon JJ, Mailhac A, Fernandez-Ortiz A, Chesebro JH, Fuster V, Badimon L. Inhibition of growth of thrombus on fresh mural thrombus. Targeting optimal therapy. Circulation 1994, 90:2432–1438

    PubMed  CAS  Google Scholar 

  72. Fitzgerald DJ, Fitzgerald GA: Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type plasminogen activator. Proc Nat Acad Sci USA 1989, 86:7585–9

    PubMed  CAS  Google Scholar 

  73. Weitz JI, Hudoba M, Massel D, Maragonore J, Hirsh J. Clot bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990, 86:385–391

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Eisenberg PR, Sherman LA, Jaffe AS: Paradoxic elevation of fibrinopeptide A after streptokinase: evidence for continued thrombosis despite intense fibrinolysis. J Am Coll Cardiol 1987, 10:527–529

    PubMed  CAS  Google Scholar 

  75. Owen J, Friedman KD, Grossman BA, Wilkins C, Berke AD, Powers ER. Thrombolytic therapy with tissue plasminogen activator or streptokinase induces transient thrombin activity. Blood 1988, 72:616–620

    PubMed  CAS  Google Scholar 

  76. Badimon L, Lassila R, Badimon J, et al: An acute surge of epinephrine stimulates platelet deposition to severily damaged vascular wall (Abstract). J Am Coll Cardiol 15:181 A, 1990

    Google Scholar 

  77. Kimura S, Nishinaga M, Ozawa T, Shimada K. Thrombin generation as an acute effect of cigarette smoking. Am Heart J 1994, 128:7–11

    PubMed  CAS  Google Scholar 

  78. Yao SK, Ober JC, McNatt J, Benedict C, Rosolowsky M, Anderson HV, Cui C, Maffrand JP, Campbell W, Buja LM, Willerson JT. ADP plays an important role in mediating platelets aggregation and cyclic flow variations in vivo in stenosed and endothelium-injured canine coronary arteries. Circ Res 1992, 70:39–48

    PubMed  CAS  Google Scholar 

  79. Larson PT, Wallen NH, Hjemdahl P: Norepinephrine-induced platelet activation in vivo is only partly counteracted by aspirin. Circulation 1994, 89:1951–1957

    Google Scholar 

  80. Lin H, Young DB: Opposing effects of plasma epinephrin and norepinephrin on coronary thrombosis in vivo. Circulation 1995, 91:1135–1142

    PubMed  CAS  Google Scholar 

  81. Badimon JJ, Badimon L, Turitto VT, Fuster V. Platelet deposition at high shear rates is enhanced by high plasma cholesterol levels: in vivo study in a rabitt model. Arterioscler Thromb 1991, 11:395–402

    PubMed  CAS  Google Scholar 

  82. Rader DJ, Hoeg JM, Brewer HB Jr: Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med 1994, 120:1012–1025

    PubMed  CAS  Google Scholar 

  83. Frank SL, Klisak I, Sparkes RS, et al: The apoprotein (a) gene resides on human chromosome 6q26-27 in close proximity to the homologous gene for plasminogen. Hum Genet 1988, 79:352–356

    PubMed  CAS  Google Scholar 

  84. Loscalzo J: Lipoprotein (a): a unique risk factor for athero-thrombotic disease. Arteriosclerosis 1990, 10:672–679

    PubMed  CAS  Google Scholar 

  85. Terres W, Tatsis E, Pfalzer B, Beil U, Beisiegel H, Hamm CW. Rapid angiographic progression of coronary artery disease in patients with elevated lipoprotein (a). Circulation 1995, 91:948–951

    PubMed  CAS  Google Scholar 

  86. Kawai C: Pathogenesis of acute myocardial infarction. Novel regulatory systems of bioactive substances in the vessel wall. Circulation 1994, 90:1033–1043

    PubMed  CAS  Google Scholar 

  87. Bensoussan D, Levy-Toledano S, Passa P, Caen J, Caniver J. Platelet hyperaggregation and increased plasma level of von Willebrand factor in diabetics with retinopathy. Diabetologgia 1975, 11:307–312

    CAS  Google Scholar 

  88. Schwartz CJ, Kelley JL, Valente AJ, Cayatte AJ, Sprague EA, Rozek MM. Pathogenesis of the atherosclerotic lesion: implication for diabetes mellitus. Diabetes Care 1992, 15: 1156–1167

    PubMed  CAS  Google Scholar 

  89. Jacoby RM, Nesto RW: Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol. 1992, 20:736–744

    PubMed  CAS  Google Scholar 

  90. The diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993, 329:977–986

    Google Scholar 

  91. Lamb JYT, Latour JG, Lesperance J, Waters D. Platelet aggregation, coronary artery disease progression and future coronary events. Am J Cardiol 1994, 73:333–338

    Google Scholar 

  92. Merlini A, Bauer KA, Oltrona L, Ardissino D, Cattaneo M, Belli C, Mannucci PM, Rosenberg RD. Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 1994, 90:61–68

    PubMed  CAS  Google Scholar 

  93. Meade TW, North WRS, Chakrabarti R, et al: Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1980, 1:1050–1054

    PubMed  CAS  Google Scholar 

  94. McGill DA, Ardlie NG: The relationship between blood fibrinogen level and coronary artery disease. Cor Art Dis 1990, 1:557–566

    Google Scholar 

  95. Rosengren A, Wilhelmsen L, Wellin L, Tsipogianni A, Teger-Nilsson AC, Wedel H. Social influences and cardiovascular risk factor as determinat of plasma fibrinogen concentration in a general population sample of middle age men. BMJ 1990, 330:634–638

    Google Scholar 

  96. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995, 91:2844–2850

    PubMed  CAS  Google Scholar 

  97. Davies MJ, Bland JM, Hangartner JRW, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischemic death. Eur Heart J 1989, 10:203–208

    PubMed  CAS  Google Scholar 

  98. Swindland A, Torvik A. Atherosclerotic carotid disease in asymptomatic individuals: a hystological study of 53 cases. Acta Neurol Scand 1988, 9:202–212

    Google Scholar 

  99. von Rokitansky C: A Manual of Pathological Anatomy (Day GE, trans.). London, UK: Sydenham Society 1852 (vol 4):261–273

    Google Scholar 

  100. Smith EB, Keen GA, Grant A, Stirk Ch. Fate of fibrinogen in human arterial intima. Arteriosclerosis 1990, 10:263–275

    PubMed  CAS  Google Scholar 

  101. Davies MJ, Thomas AC. Plaque Assuring: the cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985, 53:363–373

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Smith E: Fibrinogen, fibrin and fibrin degradation products in relation to atherosclerosis. Clin Haematol 1986, 15:355–358

    PubMed  CAS  Google Scholar 

  103. Ferns GAA, Raine EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991, 253:1129–1132

    PubMed  CAS  Google Scholar 

  104. Berk BC, Taubman MB, Griendling KK, et al: Thrombin stimulated events in cultured vascular smooth muscle cells. Biochem J 1991, 265:17334–17340

    Google Scholar 

  105. Jones A, Ceczy CL: Thrombin and factor Xa enhance the production of interleukin-1. Immunology 1990, 71:236–241

    PubMed  CAS  Google Scholar 

  106. Naito M, Hayashi T, Kuzuya M, et al: Effects of fibrinogen and fibrin on the migration of vascular smooth muscle cells in vitro. Artherosclerosis 1990, 83:9–14

    CAS  Google Scholar 

  107. Davies MJ, Thomas A: Thrombosis and acute coronary artery lesions in sudden cardiac ischemic death. N Eng J Med 1984, 310:1137–140

    CAS  Google Scholar 

  108. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (part I). N Eng J Med 1992, 326:242–250

    CAS  Google Scholar 

  109. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (part II). N Eng J Med 1992, 326:310–318

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández Ortiz, A. (2002). Role of Inflammatory Response and Thrombosis in Acute Coronary Syndromes. In: Pinsky, M.R., Artigas, A., Dhainaut, JF. (eds) Coronary Circulation and Myocardial Ischemia. Update in Intensive Care Medicine, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57212-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57212-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42588-5

  • Online ISBN: 978-3-642-57212-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics