Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 142))

Abstract

Mineral nutrients are a major part of all the physiological and biogeochemical processes in forest ecosystems. This is especially true for forests across Europe, which were deprived of nutrients due to intensive wood and litter use, and which experienced deposition of acids, nitrogen and sulphur over the second half of this century, resulting in significant nutrient imbalances for growth (Schulze 1989). Decreased nutrient availability can lead to a reduction of leaf size (Linder 1987), resulting in an almost instantaneous decrease in current year growth. In this way, the nutrient status of long-lived conifer needles might influence net primary production (NPP) long after a transient nutrient shortage, caused, e.g. by one dry season, has occurred. In natural forest ecosystems nutrient uptake from soil solution and nutrient release through litterfall and fine root turnover should balance each other such that the turnover time of nutrients within the system meets the requirements for stand growth (Gorham et al. 1979; Miller 1986; Attiwill and Adams 1993) and keeps the ecosystem nutrient cycle tight. Any deviation from this cycle due to anthropogenic influence (e.g. Vitousek et al. 1997) or natural disturbance (e.g. Foster et al. 1997) could alter one or more processes within the nutrient cycle with long-lasting effects on forest functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson GM, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems-hypothesis revisited. BioScience 48( 11 ):921–934

    Article  Google Scholar 

  • Agren GI (1988) Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ 11:613

    Article  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    Article  CAS  Google Scholar 

  • Bauer G (1997) Stickstoftbaushalt und Wachstum von Fichten-und Buchenwäldern entlang eines Europäschen Nord-Süd-Transektes. Bayreuther Forum Ökologie, Bd 53, Univ Bayreuth, Bitök, 176 pp

    Google Scholar 

  • Bauer G, Mund M, Schulze E-D (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Tree Physiology 17:777–786

    Article  PubMed  Google Scholar 

  • Bazzaz FA (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, London

    Google Scholar 

  • Bormann FH, Likens GE (1979) Paltern and process in a forested ecosystem. Springer Berlin Heidelberg New York, 253 pp

    Book  Google Scholar 

  • Buchmann N, Gebauer G, Schulze E-D (1996) Partitioning of 15N-labelled ammonium and nitrate among soil, litter, below-and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry 33:1–33

    Article  Google Scholar 

  • Chapin I FS, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Durka W, Schulze E-D, Gebauer G, Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    Article  CAS  Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung. Ergebnisse des Sollingprojektes 1966-1986. Eugen Ulmer, Stuttgart, 507 pp

    Google Scholar 

  • Ericsson A, Norden L-G, Nasholm T, Walheim M (1993) Mineral Nutrient imbalances and arginine concentrations in needles of Picea abies (L.) Karst. from two areas with different levels of airborne deposition. Trees 8:67–74

    Article  Google Scholar 

  • Ericsson A, Walheim M, Norden L-G, Nasholm T (1995) Concentrations of Mineral Nutrients and orginine in needles of Picea abies trees from different areas in southern Sweden in relation to nitrogen deposition and humus form. Ecol Bull 44:147–157

    CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1):9–19

    Article  Google Scholar 

  • Evans JR (1993) Photosynthetic acclimation and nitrogen partitioning within a Lucerne canopy. I. Canopy characteristics. Aust J Plant Physiol 20:55–67

    Article  CAS  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givinish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Foster DR, Aber JD, Melillo JM, Bowden RD, Bazzaz FA (1997) Forest response to disturbance and anthropogenic stress. BioScience 47:437–445

    Article  Google Scholar 

  • Gezelius K, Naesholm T (1993) Free amino acids and protein in Scots pine seedlings cultivated at different nutrient availabilities. Tree Physiol13:71–86

    Article  PubMed  CAS  Google Scholar 

  • Gorham E, Vitousek PM, Reiners WA (1979) The regulation of chemical budgets over the course of terrestrial ecosystem succession. Ann Rev Ecol Syst 10:53–84

    Article  CAS  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. TREE 11:378–382

    PubMed  CAS  Google Scholar 

  • Högberg P, Högbom L, Schinkel H (1998) Nitrogen-related root variables of trees along an N-deposition gradient in Europe. Tree Physiol 18:823–828

    Article  PubMed  Google Scholar 

  • Högbom L, Högberg P (1991) Nitrate nutrition of Deschampia flexuosa (L.) Trin. in relation to nitrogen deposition in Sweden. Oecologia 97:488–494

    Article  Google Scholar 

  • Huhn G, Schulz H (1996) Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. New Phytol 134:95–101

    Article  CAS  Google Scholar 

  • Ingestad T, Agren GI (1995) Plant nutrition and growth: basic principles. Plant Soil 168-169: 15–20

    Article  CAS  Google Scholar 

  • Kaupenjohann M, Zech W, Hanschel R, Horn R, Schueider Bu (1989) Mineral nutrition of forest trees: a regional survey. In: Schulze E-D, Lange OL, Oren R (eds) Air pollution and forest decline. A study of spruce (Picea abies) on acid soils. Ecological studies, vol 77. Springer, Berlin Heidelberg New York, 475 pp

    Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. TREE 12:139–143

    PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin Heidelberg New York, 540 pp

    Book  Google Scholar 

  • Linder S (1987) Response to water and nutrients in coniferous ecosystems. In: Schulze E-D, Zwoelfer H (eds) Potentials and limitations of ecosystem analysis. Springer, Berlin Heidelberg New York, pp 180–202

    Chapter  Google Scholar 

  • Luo Y, Field CB, Mooney HA (1994) Predicting responses of photosynthesis and root fraction to elevated [CO2]a: interactions among carbon, nitrogen, and growth. Plant Cell Environ 17:1195–1204

    Article  Google Scholar 

  • Millard P (1996) Ecophysiology of the internal cycling of nitrogen for tree growth. Z Pflanzenernaehr Bodenkd 159:1–10

    CAS  Google Scholar 

  • Miller HG (1986) Carbon x nutrient interactions-the limitations to productivity. Tree Physiol 2:373–385

    Article  PubMed  CAS  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145–148

    Article  CAS  Google Scholar 

  • Näsholm T, Edfast AB, Ericsson A, Norden LG (1994) Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytol 126:137–143

    Article  Google Scholar 

  • Nilsson L-O, Wiklund K (1992) Influence of nutrient and water stress on Norway spruce production in south Sweden-the role of air pollutants. Tree Physiol9:185–207

    Google Scholar 

  • Oaks A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot-Rev Can Bot 72:739–750

    Article  CAS  Google Scholar 

  • Oren R, Schulze E-D (1989) Nutritional disharmony and forest decline: a conceptual model. In: Schulze E-D, Lange OL, Oren R (eds) Forest decline and air pollution. A study of spruce (Picea abies) on acid soils. Ecological studies, vol 77. Springer, Berlin Heidelberg New York, 475 pp

    Google Scholar 

  • Paces T (1985) Sources of acidification in central europe estimated from elemental budgets in small basins. Nature 315:31–36

    Article  CAS  Google Scholar 

  • Pate JS (1983) Distribution of metabolites. In: Steward FC (ed) Plant physiology-a treatise. Academic Press, London, 335 pp

    Google Scholar 

  • Perez-Soba M, de Visser PHB (1994) Nitrogen metabolism of Douglas fir and Scots pine as affected by optimal nutrition and water supply under conditions of relatively high atmospheric deposition. Trees 9: 19–25

    Article  Google Scholar 

  • Perez-Soba M, van der Eerden LJM (1993) Nitrogen uptake in needles of Scots pine (Pinus sylvestris L.) when exposed to gaseous ammonia and ammonium fertiliser in the soil. Plant Soil 153:231–242

    Article  CAS  Google Scholar 

  • Perez-Soba M, Stulen I, van der Eerden LJM (1994) Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine (Pinus sylvestris) Needles. Physiol Plant 90:629–636

    Article  CAS  Google Scholar 

  • Rehfuess KE, Rodenkirchen H (1984) Ãœber die Nadelröte der Fichte (Picea abies Karst.) in Süddeutschland. Forstwiss Centralbl 103:245–262

    Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: patterns and process. In: Begon M, Fitter AH (eds) Advances in ecological research. Academic Press, London, pp 213–262

    Google Scholar 

  • Schlesiner WH (1997) Biogeochemistry. An analysis of global change. Academic Press, London, 588 pp

    Google Scholar 

  • Schneider S, Gessler A, Weber P, von Sengbusch D, Hanemann U, Rennenberg H (1996) Soluble N compounds in trees exposed to high loads of N: A comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions. New Phytol 134:103–114

    Article  CAS  Google Scholar 

  • Schramel P, Wolf A, Seif R, Klose BJ (1980) Eine neue Apparatur zur Druckveraschung von biologischem Material. Fresenius Z Anal Chem 302:62–64

    Article  CAS  Google Scholar 

  • Schulze E-D (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–783

    Article  PubMed  CAS  Google Scholar 

  • Schulze E-D, Fuchs M, Fuchs M (1977) Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. Oecologia 30:239–248

    Article  Google Scholar 

  • Stitt M, Schulze E-D (1994) Plant growth, storage and resource allocation: from flux control in a metabolic chain to the whole-plant level. In: Schulze E-D (ed) Flux control in biological systems. From enzymes to populations and ecosystems. Academic Press, London, 494 pp

    Google Scholar 

  • Timmer VR, Armstrong G (1987) Diagnosing nutritional status of containerised tree seedlings: comparative plant analyses. Soil Sci Soc Am J 51:1082–1086

    Article  Google Scholar 

  • Turner DP, Koerper GJ, Harmon ME, Lee JL (1995) A carbon budget for forests of the conterminous United States. Ecol Appl 5(2):421–436

    Article  Google Scholar 

  • van Dijk HFG, Roelofs JGM (1988) Effects of exessive ammonium deposition on the nutritional status and condition of pine needles Physiol Plant 73:494–501

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vogt KA, Persson H (1991) Root methods. In: Lassoie JP, Hinckley TM (eds) Techniques and Approaches in Forest Tree Physiology. CRC Press, Boca Raton, pp 477–502

    Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems. Academic Press, Orlando

    Google Scholar 

  • Weber P, Stoermer H, Gessler A, Schneider S, von Sengbusch D, Hanemann U, Rennenberg H (1998) Metabolic responses of Norway spruce (Picea abies) trees to long-term forest management practices and acute (NH4)2SO4 fertilisation: transport of soluble non-protein nitrogen compounds in xylem and phloem. New Phytol 140:401–485

    Article  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM (1990) The vernal dam: plantmicrobe competition for nitrogen in northern hardwood forests. Ecology 71:651–656

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, G.A. et al. (2000). Linking Plant Nutrition and Ecosystem Processes. In: Schulze, ED. (eds) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57219-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57219-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67239-5

  • Online ISBN: 978-3-642-57219-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics