Skip to main content

Full molecular quantum similarity matrices as QSAR descriptors

  • Chapter
Molecular Quantum Similarity in QSAR and Drug Design

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 73))

  • 187 Accesses

Abstract

In this chapter, a scheme of the application of molecular quantum similarity matrices to describe a molecular property of interest is exposed. Quantum similarity matrices need to be conveniently transformed when employed as descriptor source in QSAR procedures. In order to describe the usual transformations, dimensionality reduction and variable selection techniques will be discussed. Combination of different quantum similarity matrices, constituting the Tuned QSAR model, is also discussed. Since the only relevant test for the procedure protocol is its application on real cases, quantum similarity matrices will be used to study three different molecular sets in order to provide the reader with reliable quantitative equations for activity prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van de Waterbeemd H (1996) Chemometric Methods used in Drug Discovery. In: Van de Waterbeemd H (ed) Structure-Property Correlations in Drug Design. Academic Press, San Diego

    Google Scholar 

  2. Cuadras CM, Fortiana J (2000) The Importance of Geometry in Multivariate Analysis and some Applications. In: Rao CR, Szekely GJ (eds) Statistics for the 21st Century, Marcel Dekker, New York, pp 93–108

    Google Scholar 

  3. Torgerson WS (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17:401–419

    Article  Google Scholar 

  4. Richardson MW (1938) Psychological Bulletin 35:659–660

    Google Scholar 

  5. Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218

    Article  Google Scholar 

  6. Young G, Householder AS (1938) Discussion of a set of points in terms of their mutual distances. Psychometrika 3:19–22

    Article  Google Scholar 

  7. De Leeuw J, Heiser W (1982) Theory of multidimensional scaling. In: Krishnaiah PR, Kanal LN (eds) Handbook of Statistics, Vol 2. North Holland, Amsterdam, pp 285–316

    Google Scholar 

  8. Mardia KV, Kent JT, Bibby JM (1979) Multivariate Analysis. Academic Press, London

    Google Scholar 

  9. Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Class 3:5–48

    Article  Google Scholar 

  10. Cuadras CM, Arenas C (1990) A distance based regression model for prediction with mixed data. Commun Statist Theor Meth 19:2261–2279

    Article  Google Scholar 

  11. Cuadras CM, Arenas C, Fortiana J (1996) Some computational aspects of a distance-based model for prediction. Commun Statist Simula 25:593–609

    Article  Google Scholar 

  12. Amat L, Robert D, Besalü E, Carbô-Dorca R (1998) Molecular Quantum Similarity Measures Tuned QSAR: An Antitumoral Family Validation Study. J Chem Inf Comput Sei 38:624–631

    Article  CAS  Google Scholar 

  13. Demidovich BP, Maron IA (1981) Computational Mathematics. Mir Publishers, Moscow

    Google Scholar 

  14. Pierre DA (1969) Optimization Theory with Applications. John Wiley, New York

    Google Scholar 

  15. Carbó R, Besalü E (1994) Definition, mathematical examples and quantum chemical applications of nested summation symbols and logical Kronecker deltas. Computers Chem 18:117–126

    Article  Google Scholar 

  16. Carbó R, Besalü E (1995) Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation. J Math Chem 18:37–72

    Article  Google Scholar 

  17. Hadjipavlou-Litina D, Hansch C (1994) Quantitative structure-activity relationships of the benzodiazepines. A review and reevaluation. Chem Rev 94:1483–1505

    Article  CAS  Google Scholar 

  18. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: A new general purpose quantum chemical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  19. Kaiser KLE (ed) (1987) QSAR in environmental toxicology. Reidel Publishing Company, Dordrecht

    Google Scholar 

  20. Hutzinger O (ed) (1989) Handbook of environmental chemistry. Springer-Verlag, Berlin

    Google Scholar 

  21. Rekker RF (1977) The hydrophobic fragmental constants. Its derivation and application. A means of the characterization membrane systems. In: Nauta WT, Rekker RF (eds) Pharmacochemistry Library. Elsevier, New York, Vol 1

    Google Scholar 

  22. Amat L, Carbó-Dorca R, Ponec R (1998) Molecular quantum similarity measures as an alternative to log P values in QSAR studies. J Comput Chem 19:1575–1583

    Article  CAS  Google Scholar 

  23. Verhaar HJM, Mulder W, Hermens JLM, Rorije E, Langenberg JH, Peijnenburg WJGM, Sabljic A, Güsten H, Eriksson L, Sjöström M, Müller M, Hansen B, Nouwen J, Karcher W (1995) Overview of Structure-Activity Relationships for Environmental Endpoints. Part 1: General Outline and Procedure. Report of the EU-DG-XII Project QSAR for Predicting Fate and Effects of Chemicals in the Environment. (Contract #EV5V-CT92-0211)

    Google Scholar 

  24. Urrestarazu E, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative Structure-Activity Relationships for the Aquatic Toxicity of Polar and Nonpolar Narcotic Pollutants. J Chem Inf Comput Sci 38:845–852

    Article  Google Scholar 

  25. AMPAC 6.0,1994 Semichem, 7128 Summit, Shawnee, KS 66216 D.A

    Google Scholar 

  26. Cattell RB (1966) the scree test for the number of factors. Multivariate Behavioral Research 9:331–341

    Google Scholar 

  27. Oxender DL, Fox CF (eds) (1987) Protein Engineering. Alan R. Liss, New York, pp 221–224

    Google Scholar 

  28. Leatherbarrow RJ, Fersht AJ (1986) Protein Engineering. Protein Eng 1:7–16

    Article  CAS  Google Scholar 

  29. Hellberg S, Sjostrom M, Skagerberg B, Wold S (1987) Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem 30:1126–1135

    Article  CAS  Google Scholar 

  30. Kato A, Yutani K (1988) Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase alpha-subunits substituted at the same position. Protein Eng 2:153–156

    Article  CAS  Google Scholar 

  31. Lee C, Levitt M (1991) Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature 352:448–451

    Article  CAS  Google Scholar 

  32. Collantes ER, Dunn WJ III (1995) Amino acid side-chain descriptors for quantitative structure-activity relationship studies of peptide analogues. J Med Chem 38:2705–2713

    Article  CAS  Google Scholar 

  33. Zbilut JP, Giuliani A, Webber CL Jr, Colosimo A (1998) Recurrence quantification analysis in structure-function relationships of proteins: an overview of a general methodology applied to the case of TEM-1 beta-lactamase. Protein Eng 11:87–93

    Article  CAS  Google Scholar 

  34. Hutchison CA III, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560

    CAS  Google Scholar 

  35. DeSantis G, Berglund P, Stabile MR, Gold M, Jones JB (1998) Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the SI and SV pockets of subtilisin Bacillus lentus. Biochem 37:5968–5973

    Article  CAS  Google Scholar 

  36. Mei HC, Liaw YC, Li YC, Wang DC, Takagi H, Tsai YC (1998) Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Protein Eng 11:109–117

    Article  CAS  Google Scholar 

  37. Narinx E, Baise E, Gerday C (1997) Subtilisin from psychophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly ivolved in the adaptation to cold. Protein Eng 10:1271–1279

    Article  CAS  Google Scholar 

  38. Takagi H, Ohtsu I, Nakamori S (1997) Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions. Protein Eng 10:985–989

    Article  CAS  Google Scholar 

  39. Stauffer CE, Etson D (1969) The effect of subtilisin activity on oxidizing a methionine residue. J Biol Chem 244:5333–5338

    CAS  Google Scholar 

  40. Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521

    CAS  Google Scholar 

  41. Wells JA, Vasser M, Powers DB (1985) Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–323

    Article  CAS  Google Scholar 

  42. PC Spartan Plus, Wavefunction Inc., Irvine, CA 92612 USA

    Google Scholar 

  43. Damborsky J (1998) Quantitative structure-function and structure-stability relationships of purposely modified proteins. Protein Eng 11:21–30

    Article  CAS  Google Scholar 

  44. Nakai K, Kidera A, Kanehisa M (1988) Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng 2:93–100

    Article  CAS  Google Scholar 

  45. Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9:27–36

    Article  CAS  Google Scholar 

  46. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27:368–369

    Article  CAS  Google Scholar 

  47. Sneath PH (1966) Relations between chemical structure and biological activity in peptides. J Theor Biol 12:157–195

    Article  CAS  Google Scholar 

  48. Oobatake M, Ooi T (1977) An analysis of non-bonded energy of proteins. J Theor Biol 67:567–584

    Article  CAS  Google Scholar 

  49. Wells JA, Powers DB, Bott RR (1987) In: Oxender DL, Fox CF (eds) Protein engineering. Alan R Liss, New York, pp 279–287

    Google Scholar 

  50. Robert D, Gironés X, Carbó-Dorca R (1999) Quantification of the influence of single-point mutations on Haloalkane dehalogenase activity: a quantum similarity study. J Chem Inf Comput Sci. in press

    Google Scholar 

  51. Carbo-Dorca R, Amat L, Besalú E, Gironés X, Robert D (1999) Quantum molecular similarity: theory and applications to the evaluation of molecular properties, biological activities and toxicity. In: Carbo-Dorca R, Mezey PG (eds) The Fundamentals of Molecular Similarity. Kluwer, New York, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carbó-Dorca, R., Robert, D., Amat, L., Gironés, X., Besalú, E. (2000). Full molecular quantum similarity matrices as QSAR descriptors. In: Molecular Quantum Similarity in QSAR and Drug Design. Lecture Notes in Chemistry, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57273-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57273-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67581-5

  • Online ISBN: 978-3-642-57273-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics