Skip to main content
  • 115 Accesses

Abstract

Primal and dual decomposition procedures can lead – dependent on the structure of the problem – to efficient procedures for solving mixed—integer programming problems. Benders’ decomposition takes advantage of the primal structure of a problem by temporarily fixing the aggravating integer variables, while dual structures can be exploited by relaxing the complicating constraints in Lagrangian fashion and solving the Lagrangian dual with subgradient optimization, multiplier adjustment methods, or Dantzig-Wolfe decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beasley, J. E. (1988). An Algorithm for Solving Large Scale Capacitated Warehouse Location Problems. European Journal of Operational Research, 33:314–325.

    Google Scholar 

  2. Cornuejols, G., Sridharan, R. and Thizy, J. M. (1991). A Comparison of Heuristics and Relaxations for the Capacitated Plant Location Problem. European Journal of Operational Research, 50:280–297.

    Google Scholar 

  3. Geoffrion, A. M. and Graves, G. W. (1974). Multicommodity Distribution System Design by Benders Decomposition. Management Science, 20(5):822–844.

    Google Scholar 

  4. Holmberg, K. (1990). On the Convergence of Cross Decomposition. Mathematical Programming, 47:269–296.

    Google Scholar 

  5. Holmberg, K. (1992a). Generalized Cross Decomposition Applied to Nonlinear Integer Programming Problems: Duality Gaps and Convexification in Parts. Optimization,23:341–356.

    Google Scholar 

  6. Holmberg, K. (1992b). Linear Mean Value Cross Decomposition: A Generalization of the Kornai-Liptak Method. European Journal of Operational Research,62:55–73.

    Google Scholar 

  7. Holmberg, K. (1994). Cross Decomposition Applied to Integer Programming Problems: Duality Gaps and Convexification in Parts. Operations Research, 42(4):657–668.

    Google Scholar 

  8. Holmberg, K. (1997). Mean Value Cross Decomposition Applied to Integer Programming Problems. European Journal of Operational Research, 97:124–138.

    Google Scholar 

  9. Holmberg, K. (1999). Mean Value Cross Decomposition Based Branch-and-Bound for Mixed-Integer Integer Programming Problems. In: Kall, P. and Lüthi, H.-J., editors, Operations Research Proceedings 1998, pages 200–209. Springer, Berlin.

    Google Scholar 

  10. Holmberg, K. and Jörnsten, K. O. (1984). Cross Decomposition Applied to the Stochastic Transportation Problem. European Journal of Operational Research, 17:361–368.

    Google Scholar 

  11. Jacobsen, S. K. (1983). Heuristics for the Capacitated Plant Location Model. European Journal of Operational Research, 12:253–261.

    Google Scholar 

  12. Kim, S., Cho, S.-C. and Um, B.-S. (1989). A Simplified Cross Decomposition Algorithm for Multiple Right Hand Choice Linear Programming Journal of the Operational Research Society of Japan, 32(4):441–449.

    Google Scholar 

  13. Kornai, J. and Liptak, T. (1965). Two-Level Planning. Econometrica, 33(1):141–169.

    Google Scholar 

  14. Minoux, M. (1986). Mathematical Programming - Theory and Algorithms. John Wiley & Sons, Chichester et al.

    Google Scholar 

  15. Van Roy, T. J. (1980). Cross Decomposition for Large-Scale,Mixed Integer Linear Programming with Application to Facility Location on Distribution Networks. PhD thesis, Katholieke Universiteit Leuven.

    Google Scholar 

  16. Van Roy, T. J. (1983). Cross Decomposition for Mixed Integer Programming. Mathematical Programming, 25:46–63.

    Google Scholar 

  17. Van Roy, T. J. (1986). A Cross Decomposition Algorithm for Capacitated Facility Location. Operations Research, 34(1):145–163.

    Google Scholar 

  18. Wentges, P. (1994). Standortprobleme mit Berücksichtigung von Kapazitätsrestriktionen: Modellierung und Lösungsverfahren. PhD thesis, University of St. Gallen.

    Google Scholar 

  19. Wentges, P. (1996). Accelerating Benders’ Decomposition for the Capacitated Facility Location Problem. Mathematical Methods of Operations Research, 44(2):267–290.

    Google Scholar 

  20. Wentges, P. (1997). Weighted Dantzig-Wolfe Decomposition for Linear Mixed-Integer Programming. International Transactions in Operational Research, 4(2):151–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wentges, P. (2001). On Cross Decomposition for Mixed-Integer Programming. In: Kischka, P., Möhring, R.H., Leopold-Wildburger, U., Radermacher, FJ. (eds) Models, Methods and Decision Support for Management. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57603-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57603-4_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-642-63306-5

  • Online ISBN: 978-3-642-57603-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics