Skip to main content

Pitfalls in the interpretation of PET studies

  • Chapter
PET in Clinical Oncology
  • 149 Accesses

Abstract

Positron emission tomography (PET) has found widespread use in several countries due to the availability of new whole-body tomographs. Particularly in oncology, PET is being used for tumor diagnosis. The currently available PET systems provide an axial field-of-view exceeding 15 cm, which is helpful for partial or whole-body PET studies using multiple bed positions. Besides whole-body imaging, cross-sectional imaging is used for both qualitative and quantitative analysis of PET studies. Dependent on the PET system used, up to 63 slices for one frame (covering the axial field-of-view) are reconstructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Nabi H, Doerr RJ, Lamonica DM, Cronin VR, Galantowicz RJ, Carbone GM, Spaulding MB (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760

    PubMed  CAS  Google Scholar 

  2. Bachor R, Kocher F, Gropengiesser F, Reske SN, Hautmann RE (1995) Positronenemissionstomographie. Einführung eines neuen Verfahrens in die Diagnostik urologischer Tumoren und erste klinische Ergebnisse. Urologe 34:138–142

    PubMed  CAS  Google Scholar 

  3. Bender H, Schomburg A, Albers P, Ruhlmann J, Biersack HJ (1997) Possible role of FDG-PET in the evaluation of urologic malignancies. Anticancer Res 17:1655–1660

    PubMed  CAS  Google Scholar 

  4. Burger C, Buck A (1997) Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 38:1818–1823

    PubMed  CAS  Google Scholar 

  5. Dimitrakopoulou-Strauss A, Gutzler F, Strauss LG, Irngartinger G, Oberdorfer F, Doll J, Stremmel W, van Kaick G (1996) PET-Studien mit C-11-Äthanol bei der intratumoralen Therapie von hepatozellulären Karzinomen. Radiologe 36:744–749

    Article  PubMed  CAS  Google Scholar 

  6. Dimitrakopoulou-Strauss A, Schadendorf D, Naeher H, Mantaka P, Oberdorfer F, Strauss LG (1998) FDG and F-18-dihydroxyphenylalanine in patients with metastatic melanomas. Eur J Nucl Med 25:953 (abstr)

    Google Scholar 

  7. Eil A, Dimitrakopoulou-Strauss A, Tilgen W, Oberdorfer F, Doll J, Strauss LG (1996) Functional imaging with positron emission tomography in patients with malignant melanoma. Onkologie 19:253–259

    Article  Google Scholar 

  8. Engenhart R, Kimmig B, Hover KH, Strauss LG, Lorenz WJ, Wannenmacher M (1990) Photon-neutron therapy for recurrent colorectal cancer - follow up and preliminary results. Strahlenther Onkol 166:95–98

    PubMed  CAS  Google Scholar 

  9. Feine U, Lietzenmayer R, Handke JP, Held J, Wohrle H, Mueller-Schauenburg W (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 37:1468–1472

    PubMed  CAS  Google Scholar 

  10. Fischbein NJ, Assar OS, Caputo GR, Kaplan MJ, Singer MI, Price DC, Dillon WP, Hawkins RA (1998) Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. Am J Neuroradiol 19:1189–1196

    PubMed  CAS  Google Scholar 

  11. Fischman AJ, Thornton AF, Frosch MP, Swearinger B, Gonzalez RG, Alpert NM (1997) FDG hypermetabolism associated with inflammatory necrotic changes following radiation of meningioma. J Nucl Med 38:1027–1029

    PubMed  CAS  Google Scholar 

  12. Fukuda H, Yamaguchi K, Matsuzawa T, Abe Y, Yamada K, Yoshioka S, Ito M, Fujiwara T, Tada M, Watanuki S, Ido T (1985) Imaging of hepatoma with 2-deoxy-2-[18F]fluoroD-galactose by positron emission tomography. In: Matsuzawa T (ed) Proceedings of the International Symposium on Current and Future Aspects of Cancer Diagnosis with Positron Emission Tomography (PET 85). Tohoku University, Sendai, pp 24–27

    Google Scholar 

  13. Greven KM, Williams DW 3rd, Keyes JW Jr, McGuirt WF, Watson NE Jr, Case LD (1997) Can positron emission tomography distinguish tumor recurrence from irradiation sequelae in patients treated for larynx cancer? Cancer J Sci Am 3:353–357

    PubMed  CAS  Google Scholar 

  14. Guhlmann A, Brecht-Kraus D, Suger G, Glatting G, Kotzerke J, Kinzl L, Reske SN (1998) Chronic osteomyelitis detection with FDG PET and correlation with histopathologic findings. Radiology 206:749–754

    PubMed  CAS  Google Scholar 

  15. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, Romahn J, van Kaick G (1991) PET studies of fluoro-deoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 32:1485–1490

    PubMed  CAS  Google Scholar 

  16. Higashi K, Clavo AC, Wahl RL (1993a) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34:414–419

    CAS  Google Scholar 

  17. Higashi K, Clavo AC, Wahl RL (1993b) In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 34:2278–2280

    Google Scholar 

  18. Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, Nakamura K, Fukumura T, Masuda K (1996) FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 10:185–191

    Article  PubMed  CAS  Google Scholar 

  19. Kontaxakis G, Strauss LG, van Kaick G, Sakas G, Pavlopoulos S (1998) Ordered-subsets acceleration of the ISRA, WLS and SAGE image reconstruction methods for emission tomography. Eur J Nucl Med 25:948 (abstr)

    Google Scholar 

  20. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl RL (1997) Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med 24:615–620

    PubMed  CAS  Google Scholar 

  21. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  22. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N (1994) Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 35:104–112

    PubMed  CAS  Google Scholar 

  23. Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C (1998) A JAVA environment for medical image data analysis: initial application for brain PET quantification. Med Inf 23:207–214

    Article  CAS  Google Scholar 

  24. Nieweg OE, Pruim J, van Ginkel RJ, Hoekstra HJ, Paans AM, Molenaar WM, Koops HS, Vaalburg W (1996) Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J Nucl Med 37:257–261

    PubMed  CAS  Google Scholar 

  25. Palmer WE, Rosenthal DI, Schoenberg OI, Fischman AJ, Simon LS, Rubin RH, Polisson RP (1995) Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 196:647–655

    PubMed  CAS  Google Scholar 

  26. Reißer C (1994) Maligne Tumoren im Kopf-Hals-Bereich: Bedeutung des Glukosestoffwechsels für die Diagnostik und das Therapiemanagement. Habilitation, RuprechtKarls-Universität Heidelberg

    Google Scholar 

  27. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? Am J Neuroradiol 19:407–413

    PubMed  CAS  Google Scholar 

  28. Rogers LF (1987) The osseous system: miscellaneous conditions. In: Juhl JH, Crummy AB (eds) Essentials of Radiologic Imaging. J.B. Lippincott Company, Philadelphia, pp 248–254

    Google Scholar 

  29. Shreve PD (1998) Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 25:259–264

    Article  PubMed  CAS  Google Scholar 

  30. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, Marin-Grez M, Helus F, Oberdorfer F, Schmidlin P, van Kaick G (1989) Recurrence of colorectal tumors: PET evaluation. Radiology 170:329–332

    PubMed  CAS  Google Scholar 

  31. Strauss LG, Tilgen W, Haberkorn U, Knopp MV, Dimitrakopoulou A, Helus F, van Kaick G (1990) PET studies with F-18-deoxyglucose in metastatic melanoma. Radiology 177(P):199

    Google Scholar 

  32. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    PubMed  CAS  Google Scholar 

  33. Strauss LG (1996) Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415

    Article  PubMed  CAS  Google Scholar 

  34. Strauss LG (1997) Positron emission tomography: current role for diagnosis and therapy monitoring in oncology. Oncologist 2:381–388

    PubMed  Google Scholar 

  35. Tahara T, Ichiya Y, Kuwabara Y, Otsuka M, Miyake Y, Gunasekera R, Masuda K (1989) High [18F]-fluorodeoxyglucose uptake in abdominal abscesses: a PET study. J Comput Assist Tomogr 13:829–831

    Article  PubMed  CAS  Google Scholar 

  36. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N (1995) High accumulation of fluorine-18-fluorodeoxyglucose in terpentine-induced inflammatory tissue. J Nucl Med 36:1301–1306

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strauss, L.G. (2000). Pitfalls in the interpretation of PET studies. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_30

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics