Skip to main content

The Role of Retinoids in Vertebrate Limb Morphogenesis: Integration of Retinoid- and Cytokine-Mediated Signal Transduction

  • Chapter
Retinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 139))

Abstract

Vitamins, important accessory molecules required for a large number of physiological processes, were discovered at the turn of this century. It has long been recognized that in the absence of vitamin A, the growth of animals is adversely affected (Mc Collum and Davis 1913; Osborne and Mendel 1913). In the 1940s and 1950s, Warkany and colleagues studied the development of vitamin A deficient rats (e.g., WIlson et al. 1953). These investigations resulted in the identification of a broad spectrum of developmental defects in offspring of vitamin A deficient rats such as heart, lung, thymus and digestive tract dysmorphogenesis. Studies in the 1920s by Wolbach and Howe (1925) provided the first link between vitamin A status and tissue histology. These investigators showed that a deficiency in vitamin A causes squamous metaplasia and keratinization of most columnar epithelia of the body. Subsequently, Fell and Mellanby (1953) showed that high concentrations of vitamin A suppressed keratinization of epithelia and caused this tissue to differentiate into a mucussecreting, ciliated epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimenko M-A, Ekker M (1995) Anterior duplication of the Sonic hedgehog expression pattern in the pectoral fin buds of zebrafish treated with retinoic acid. Dev Biol 170:243–247

    Article  PubMed  CAS  Google Scholar 

  • Alberch P, Gale EA (1983) Size-dependence during the development of the amphibian foot: colchincine induced digital loss or reduction. J Embryol Exp Morphol 76:177–197

    PubMed  CAS  Google Scholar 

  • Ang HL, Duester G (1997) Initiation of retinoid signaling in primitive streak mouse embryos: spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. Dev Dyn 208:536–543

    Article  PubMed  CAS  Google Scholar 

  • Ang HL, Hayamizu TF, Zgombic-Knight M, Duester G (1996) Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression. J Biol Chem 271:9526–9534

    Article  PubMed  CAS  Google Scholar 

  • Ang SL, Rossant J (1994) HNF-3ß is essential for node and notochord formation in mouse development. Cell 78:561–574

    Article  PubMed  CAS  Google Scholar 

  • Beato M, Herrich P, Schütz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    Article  PubMed  CAS  Google Scholar 

  • Bhat PV, Labrecque J, Boutin J-M, Lacroix A, Yoshida A (1995) Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation. Gene 166:303–306

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP (1992) Introduction of a retinoic reporter gene into the urodele limb blastema. Proc Natl Acad Sei USA 89:11386–11390

    Article  CAS  Google Scholar 

  • Brockes JP (1994) New approaches to amphibian limb regeneration. Trends Genet 10:169–173

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    Article  PubMed  CAS  Google Scholar 

  • Cancela ML, Price PA (1992) Retinoic acid induces matrix Gla protein gene expression in human cells. Endocrinology 130:102–108

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of HoxA-1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    PubMed  CAS  Google Scholar 

  • Chai X, Napoli J (1996) Cloning of a rat cDNA encoding retinol dehydrogenase isozyme type III. Gene 169:219–222

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  • Chang B-E, Blader P, Fischer N, Ingham PW, Strähle U (1997) Axial (HNF3ß) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO 16:3955–3964

    Article  CAS  Google Scholar 

  • Charité J, Graaff WD, Shen S, Deschamps J (1994) Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78:589–601

    Article  PubMed  Google Scholar 

  • Chen Y, Huang L, Solursh M (1994) A concentration gradient of retinoids in the early xenopus laevis embryo. Dev Biol 161:70–76

    Article  PubMed  Google Scholar 

  • Chen Y-P, Huang L, Russo AF, Solursh M (1992) Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc Natl Acad Sci USA 89:10056–10059

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383:407–413

    Article  PubMed  CAS  Google Scholar 

  • Cohn MJ, Izpisúa-Belmonte JC, Abud H, Heath JK, Tickle C (1995) Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80:739–746

    Article  PubMed  CAS  Google Scholar 

  • Conlon RA (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11:314–319

    Article  PubMed  CAS  Google Scholar 

  • Connor MJ (1988) Oxidation of retinol to retinoic acid as a requirement for biological activity in mouse epidermis. Cancer Res 48:7038–7040

    PubMed  CAS  Google Scholar 

  • Connor MJ, Smith MH (1987) Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo. Biochem J 244:489–492

    PubMed  CAS  Google Scholar 

  • Costaridis P, Horton C, Zeitlinger J, Holder N, Maden M (1996) Endogenous retinoids in the zebrafish embryo and adult. Dev Dyn 205:41–51

    Article  PubMed  CAS  Google Scholar 

  • Creech Kraft J, Schuh T, Juchau M, Kimelman D (1994) The retinoid X receptor ligand, 9-cisretinoic acid, is a potential regulator of early Xenopus development. Proc Natl Acad Sci USA 91:3067–3071

    Article  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    PubMed  CAS  Google Scholar 

  • Crossley PH, Minowanda G, MacArthur CA, Martin GR (1996a) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84:127–136

    Article  PubMed  CAS  Google Scholar 

  • de Thé H, Mar Vivanco-Ruiz MD, Tiollais P, Stunnenberg H, DeJean A (1990) Identification of a retinoic acid response element in the retinoic acid receptor ßgene. Nature 343:177–180

    Article  PubMed  Google Scholar 

  • De Verneuil, Metzger (1990)

    Google Scholar 

  • Dew SE, Ong DE (1997) Absorption of retinol from the retinol: retinol-binding complex by small intestinal gut sheets from the rat. Arch Biochem Biophys 338:233–236

    Article  PubMed  CAS  Google Scholar 

  • Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, Chambon P (1989) Differential expression of genes encoding α, ßand γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705

    Article  PubMed  Google Scholar 

  • Dowling JE, Wald G (1960) The biological function of vitamin A acid. Proc Natl Acad Sci USA 46:587–608

    Article  PubMed  CAS  Google Scholar 

  • Duester G (1996) Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry 35:12221–12227

    Article  PubMed  CAS  Google Scholar 

  • Dupé V, Davenne M, Brocard J, Dollé P, Mark M, Dierich A, Chambon P, Rijli FM (1997) In vivo functional analysis of the Hoxa-1 3’ retinoic acid response element (3’ RARE). Development 124:399–410

    PubMed  Google Scholar 

  • Duprez DM, Kostakopoulou K, Francis-West PH, Tickle C, Brickell PM (1996) Activation of Fgf-4 and HoxD gene expression by BMP-2 expression cells in the developing chick limb. Development 122:1821–1828

    PubMed  CAS  Google Scholar 

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bund to DR1 and DR2 repeated motifs. Cell 71:73–85

    Article  PubMed  CAS  Google Scholar 

  • Durston AJ, Timmermans JPM, Hage WJ, Hendriks HFJ, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    Article  PubMed  CAS  Google Scholar 

  • Duster G, Shean ML, McBride MS, Stewart MJ (1991) Retinoic acid responsive element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Mol Cell Biol 11:1638–1646

    Google Scholar 

  • Dyson E, Sucov HM, Kubalak SW, Schmid-Schonbein GW, DeLano FA, Evans RM, Ross J Jr, Chien KR (1995) Atrial like phenotype is associated with embryo in ventricular failure in retinoid X receptor α-/-mice. Proc Natl Acad Sci USA 92:7386–7390

    Article  PubMed  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  PubMed  CAS  Google Scholar 

  • Eichele G (1989) Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107:863–868

    PubMed  CAS  Google Scholar 

  • Eichele G (1997) Retinoids: from hindbrain patterning to Parkinson disease. Trends Genet 13:943–945

    Article  Google Scholar 

  • Fell HB, Mellanby E (1953) Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol 119:470–488

    PubMed  CAS  Google Scholar 

  • Fisher GJ, Voorhees JJ (1996) Molecular mechanism of retinoid actions in skin. FASEB J 10:1002–1013

    PubMed  CAS  Google Scholar 

  • Forman et al. (1992)

    Google Scholar 

  • Francis PH, Richardson MK, Brickell PM, Tickle C (1994) Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb. Development 120:209–218

    PubMed  CAS  Google Scholar 

  • Fujii H, Sato T, Kaneko S, Gotoh O, Fulii-Kuriyama Y, Osawa K, Kato S, Hamada H (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryo. EMBO 16:4163–4173

    Article  CAS  Google Scholar 

  • Gérard M, Chen J-Y, Gronemeyer H, Chambon P, Duboule D, Zákány J (1996) In vivo targeted mutagenesis of a regulatory element required for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes Dev 10:2326–2334

    Article  PubMed  Google Scholar 

  • Ghazal P, DeMattei C, Giulietti E, Kliewer SA, Umesono K, Evans RM (1992) Retinoic acid receptors initiate induction of the cytomegalovirus enhancer in embyonal cells. Proc Natl Acad Sci USA 89:7630–7634

    Article  PubMed  CAS  Google Scholar 

  • Giguère V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629

    Article  PubMed  Google Scholar 

  • Gudas LJ, Sporn MB, Roberts AB (1994) Cellular biology and biochemistry of the retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Raven, New York, pp 443–520

    Google Scholar 

  • Hamburger V (1938) Morphogenetic and axial self-differentiation of transplanted limb primordia of 2-day chick embryos. J Exp Zool 77:379–400

    Article  Google Scholar 

  • Hammerschmidt M, Brook A, McMahon AP (1997) The world according to hedgehog. Trends Genet 13:14–21

    Article  PubMed  CAS  Google Scholar 

  • Hayamizu TF, Bryant SV (1994) Reciprocal changes in Hox D13 and RARß 2 expression in response to retinoic acid in chick limb buds. Dev Biol 166:123–132

    Article  PubMed  CAS  Google Scholar 

  • Helms J, Kim CH, Thaller C, Eichele G (1996) Retinoic acid signaling is required during early limb development. Development 122:1385–1394

    PubMed  CAS  Google Scholar 

  • Helms J, Thaller C, Eichele G (1994) Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development 120:3267–3274

    PubMed  CAS  Google Scholar 

  • Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187:25–35

    Article  PubMed  CAS  Google Scholar 

  • Hill DS, Ragsdale CWJ, Brockes JP (1993) Isoform-specific immunological detection of newt retinoic acid receptor δ1 in normal and regenerating limbs. Development 117:937–945

    PubMed  CAS  Google Scholar 

  • Hofmann C, Eichele G (1994) Retinoids in development. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Raven, New York, pp 387–441

    Google Scholar 

  • Hogan BLM, Thaller C, Eichele G (1992) Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 359:237–241

    Article  PubMed  CAS  Google Scholar 

  • Honig LS (1981) Positional signal transmission in the developing chick limb. Nature 291:72–73

    Article  PubMed  CAS  Google Scholar 

  • Hornbruch A, Wolpert L (1991) The spatial and temporal distribution of polarizing activity in the flank of the pre-limb-bud stages in the chick embryos. Development 111:725–731

    PubMed  CAS  Google Scholar 

  • Horton C, Maden M (1995) Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev Dyn 202:312–323

    Article  PubMed  CAS  Google Scholar 

  • Huan M-E, Siddiqui A (1992) Retinoid X receptor RXR-α binds to and trans-activates the hepatitis B virus enhancer. Proc Natl Acad Sci USA 89:9059–9063

    Article  PubMed  CAS  Google Scholar 

  • Hummler H, Hendrickx AG, Nau H (1994) Maternal pharmacokinetics, metabolism, and embryo exposure following a teratogenic dosing regimen with 13-cis-retinoic acid (isotretinoin) in the cynomolgus monkey. Teratology 50:184–193

    Article  PubMed  CAS  Google Scholar 

  • Husmann M, Hoffmann B, Stump DG, Chytil F, Pfahl M (1992) A retinoic acid response element from the rat CRBPI promoter is activated by an RAR/RXR heterodimer. Biochem Biophys Res Commun 187:1558–1564

    Article  PubMed  CAS  Google Scholar 

  • Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  PubMed  CAS  Google Scholar 

  • Johnson et al (1994)

    Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J-L, Dollé P, Chambon P (1994) Genetic analysis of RXRα developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Ghyselinck N, Krezel W, Dupé V, Grondona JM, Chambon P (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124:313–326

    PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM (1992) Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci USA 89:1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Kochhar DM (1973) Limb development in mouse embryos. Teratology 7:289–299

    Article  CAS  Google Scholar 

  • Kochhar DM (1985) Skeletal morphogenesis: comparative effects of a mutant gene and a teratogen. Prog Clin Biol Res 171:267–281

    PubMed  CAS  Google Scholar 

  • Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  PubMed  CAS  Google Scholar 

  • Langston AW, Gudas LJ (1992) Identification of a retinoic acid responsive enhancer 3’ of the murine homeobox gene Hox-1.6. Mech Dev 39:217–227

    Article  Google Scholar 

  • Langston AW, Thompson JR, Gudas LJ (1997) Retinoic acid-responsive enhancers located 3’ of the HoxA and HoxB homeobox gene clusters. J Biol Chem 272:2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Leblanc BP, Stunnenberg HG (1995) 9-cis retinoic acid signaling: changing partners causes some excitement. Genes Dev 9:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM (1996) Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–392

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Zhang X-K, Pfahl M (1992) RAR gamma2 expression is regulated through a retinoic acid response element embedded in Spl sites. Mol Cell Biol 12:2976–2985

    PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in the retinoic acid signaling pathways. Trends Biochem Sci 176:427–433

    Article  Google Scholar 

  • Leroy P, Nakshatri H, Chambon P (1991) Mouse retinoic acid receptor α2. isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 88:10138–10142

    Article  PubMed  CAS  Google Scholar 

  • Lipkin SM, Nelson CA, Glass CK, Rosenfeld MG (1992) A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains. Proc Natl Acad Sci USA 89:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Lohnes D, Mark M, Mendelsohn C, Dollé P, Dierich A, Gorry P, Gansmuller A, Chambon P (1994) Function of the retinoic acid receptors (RARs) during development (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748

    PubMed  CAS  Google Scholar 

  • Lopez-Martinez A, Chang DT, Chiang C, Porter JA, Ros MA, Simandl BK, Beachy PA, Fallon JF (1995) Limb patterning activity and restricted posterior localization of the amino-terminal product of Sonic hedgehog cleavage. Curr Biol 5:791–796

    Article  PubMed  CAS  Google Scholar 

  • Lu et al (1997a)

    Google Scholar 

  • Lu H-C, Revelli J-P, Goering L, Thaller C, Eichele G (1997b) Retinoids signaling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development 124:1643–1651

    PubMed  CAS  Google Scholar 

  • Lucas PC, Forman BM, Samuels HH, Granner DK (1991) Specificity of a retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter: consequences of both retinoic acid and thyroid hormone receptor binding. Mol Cell Biol 11:5164–5170

    PubMed  CAS  Google Scholar 

  • Ludolph DC, Cameron JA, Stocum DL (1990) The effect of retinoic acid on positional memory in the dorsoventral axis of regenerating axolotl limbs. Dev Biol 140:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295:672–675

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1993) The homeotic transformation of tails into limbs in Rana temporaria by retinoids. Dev Biol 159:379–391

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6:417–426

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1988) Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335:733–735

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1989) The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development 107 [Suppl]:109–119

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Evans RM (1994) The retinoid receptors. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Ravern, New York, pp 319–349

    Google Scholar 

  • Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338

    PubMed  CAS  Google Scholar 

  • Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homebox gene Hoxb-1. Nature 370:567–571

    Article  PubMed  CAS  Google Scholar 

  • McCollum EV, Davis M (1913) The necessity of certain lipids in the diet during growth. J BIol Chem 15:167–175

    CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Means, AL, Gudas LJ (1995) The roles of retinoids in vertebrate development. Annu Rev Biochemistry 64:201–233

    Article  CAS  Google Scholar 

  • Minucci S, Ozato K (1996) Retinoid receptors in transcriptional regulation. Curr Opin Gen Dev 6:567–574

    Article  CAS  Google Scholar 

  • Mohanty-Hejmadi P, Dutta SK, Mahapatra P (1992) Limbs generated at site of tail amputation in marbled balloon frog after vitamin A treatment. Nature 355:352–353

    Article  PubMed  CAS  Google Scholar 

  • Monkemeyer J, Ludolph DC, Cameron J-A, Stocum DL (1992) Retinoic acid-induced change in anteroposterior positional identity in regenerating axolotl limbs is dosedependent. Dev Dyn 193:286–294

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee R, et al (1997) Sensitization of diabetic and obese mice to insulin by retinoids X receptor agonists. Nature 386:407–410

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Cánoves P, Vik DP, Tack BF (1990) Mapping of a retinoic acid-responsive element in the promoter region of the complement factor H gene. J Biol Chem 265:20065–20068

    PubMed  Google Scholar 

  • Nagata T, Segars JH, Levi B-Z, Ozato K (1992) Retinoic acid-dependent transactivation of major histocompatibility complex class I promoters by the nuclear hormone receptor H-2RIIBP in undifferentiated embryonal carcinoma cells. Proc Natl Acad Sci USA 89:937–941

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, et al (1996) Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J Biol Chem 271:4355–4365

    Article  PubMed  CAS  Google Scholar 

  • Napoli JL (1996) Retinoic acid biosynthesis and metabolism. FASEB 10:993–1001

    CAS  Google Scholar 

  • Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368

    Article  PubMed  CAS  Google Scholar 

  • Niazi IA, Saxena S (1978) Abnormal hind limb regeneration in tadpoles of the toad. Bufo andersoni, exposed to excess vitamin A. Folia Biol (Krakow) 26:3–8

    CAS  Google Scholar 

  • Niederreither K, McCaffery P, Dräger UC, Chambon P, Dollé P (1997) Restricted expression and retinoic acid-induced downregulation of the retinal dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 62:67–78

    Article  PubMed  CAS  Google Scholar 

  • Niederreither K, Subbarayan V, Dollé P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  PubMed  CAS  Google Scholar 

  • Niederreither K, Ward SJ, Dollé P, Chambon P (1996) Morphological and molecular characterization of retinoic acid-induced limb duplication in mice. Dev Biol 176:185–198

    Article  PubMed  CAS  Google Scholar 

  • Niswander L, Jeffrey S, Martin GR, Tickle C (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371:609–612

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103 [Suppl]:121–140

    PubMed  Google Scholar 

  • Noji et al. (1991)

    Google Scholar 

  • Ogura T, Evans RM (1995a) A retinoic acid-triggered cascade of HOXB1 gene activation. Proc Natl Acad Sci USA 92:387–391

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Evans RM (1995b) Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation. Proc Natl Acad Sci USA 92:392–396

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Agara A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244

    PubMed  CAS  Google Scholar 

  • Ong DE, Newcomer ME, Chytil F (1993) Cellular retinoid-binding proteins. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Raven, New York

    Google Scholar 

  • Oro AE, McKeown M, Evans RM (1992) The Drosophila retinoid X receptor homolog ultraspiracle functions in both female reproduction and eye morphogenesis. Development 115:449–462

    PubMed  CAS  Google Scholar 

  • Osborne TB, Mendel LB (1913) The relation of growth to the chemical constituents of the diet. J Biol Chem 15:311–326

    Google Scholar 

  • Pagan SM, Ros MA, Tabin C, Fallon JF (1996) Surgical removal of limb bud Sonic hedgehog results in posterior skeletal defects. Dev Biol 180:35–40

    Article  PubMed  CAS  Google Scholar 

  • Parr B, McMahon A (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription. Cell 89:325–328

    Article  PubMed  CAS  Google Scholar 

  • Pecorino LT, Entwistle A, Brockes JP (1996) Activation of a single retinoic acid receptor isoform mediates proximodistal respecification. Curr Biol 6:563–569

    Article  PubMed  CAS  Google Scholar 

  • Penzes P, Wang X, Sperkova Z, Napoli JL (1997) Cloning of a rat cDNA encoding retinal dehydrogenase isozyme type I and its expression in E. coli. Gene 191:167–172

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel WW, Hendriks HF, Folkers GE, van den Brink CE, Dekker EJ, Edelenbosch C, van der Saag PT, Durston AJ (1993) The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366:340–344

    Article  PubMed  CAS  Google Scholar 

  • Pöpperl H, Featherstone MS (1993) Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol Cell Blol 13:257–265

    Google Scholar 

  • Ragsdale CW, Jr, Gates PB, Hill DS, Brockes JP (1992) Delta retinoic acid receptor isoform dl is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 40:99–112

    Article  Google Scholar 

  • Ragsdale CWJ, Petkovich M, Gates PB, Chambon P, Brockes JP (1989) Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341:654

    Article  PubMed  CAS  Google Scholar 

  • Raisher BD, Guilick T, Zhang Z, Strauss AW, Moore DD, Kelly DP (1992) Identification of a novel retinoid-responsive element in the promoter region of the medium chain acyl-coenzyme A dehydrogenase gene. J Biol Chem 267:20264–20269

    PubMed  CAS  Google Scholar 

  • Ray WJ, Bain G, Yao M, Gottlieb DI (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem 272:18702–18708

    Article  PubMed  CAS  Google Scholar 

  • Reginelli AD, Wang Y-Q, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msxl (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076

    PubMed  CAS  Google Scholar 

  • Richard S, Zingg HH (1991) Identification of a retinoic acid response element in the human oxytocin promoter. J Biol Chem 266:21428–21433

    PubMed  CAS  Google Scholar 

  • Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, Dodd J (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    Article  PubMed  CAS  Google Scholar 

  • Rogers MB (1997) LIfe-and-death decisions influenced by retinoids. CurrTop Dev Biol 35:1–46

    Article  CAS  Google Scholar 

  • Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V, Karathanasis SK (1991) A retinoic acid-response element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11:3814–3820

    PubMed  CAS  Google Scholar 

  • Rowe DA, Fallon JF (1982) The proximodistal determination of skeletal parts in the developing chick leg. J Embryol Exp Morphol 68:1–7

    PubMed  CAS  Google Scholar 

  • Roy B, Taneja R, Chambon P (1995) Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinorma cell differentiation by an RA receptorα (RARα )-, RARß-, or RARγ-selective ligand in combination with a retinoid X receptor-specific ligand. Mol Cell Biol 15:6481–6487

    PubMed  CAS  Google Scholar 

  • Ruberte E, Dollé P, Chambon P, Morriss-Kay G (1991) Retinoic acid receptors and cellular retinoid binding proteins II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111:45–60

    PubMed  CAS  Google Scholar 

  • Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992) Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115:973–978

    PubMed  CAS  Google Scholar 

  • Rutelege JC, Shourbaji AG, Hughes LA, Polifka JE, Cruz YP, Bishop JB, Generoso WM (1994) Limb and lower-body duplications induced by retinoic acid in mice. Proc Natl Acad Sci USA

    Google Scholar 

  • Saunders JW (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403

    Article  PubMed  Google Scholar 

  • Saunders JWJ, Gasseling MT (1968) Ectodermal-mesenchymal interactions in the origin of limb symmetry. In: Fleischmajer R, Billingham RE (eds) Epithelial mesenchymal interactions. Williams and Wilkins, Baltimore, pp 78–97

    Google Scholar 

  • Scadding S, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162:608–617

    Article  PubMed  CAS  Google Scholar 

  • Schüle R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM (1990) Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61:497–504

    Article  PubMed  Google Scholar 

  • Scott WJJ, Walter R, Tzimas G OSJ, Nau H, Collins MD (1994) Endogenous status of retinoids and their cytosolic binding proteins in limb buds of chick vs mouse embryos. Dev Biol 165:397–409

    Article  PubMed  CAS  Google Scholar 

  • Searls RL, Janners MY (1971) The initiation of limb bud outgrowth in the embryonic chick. Dev Biol 24:198–213

    Article  PubMed  CAS  Google Scholar 

  • Seleiro EAP, Rowe A, Brickell PM (1995) The chicken retinoid-X-receptor-α gene and its expression in the developing limb. Roux’s Arch. Dev Biol 204:244–249

    CAS  Google Scholar 

  • Shubin NH, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol Biol 20:319–387

    Article  Google Scholar 

  • Smith SM, Eichele G (1991) Temporal and regional differences in the expression of distinct retinoic acid receptor-ß transcripts in the chick embryo. Development 111:245–252

    PubMed  CAS  Google Scholar 

  • Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P (1991) A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 10:2223–2230

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Goodman DS (1994) Book the retinoids. Raven, New York

    Google Scholar 

  • Stratford T, Horton C, Maden M (1996) Retinoic acid is required for the formation of outgrowth in the chick limb bud. Curr Biol 6:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Pöpperl H, Marshall H, Kuroiwa A, Krumlauf R (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265:1728–1731

    Article  PubMed  CAS  Google Scholar 

  • Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXRα mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Sucov HM, Murakami KK, Evans RM (1990) Characterization of an autoregulated response element in the mouse retinoic acid receptor type ßgene. Proc Natl Acad Sci USA 87:5392–5396

    Article  PubMed  CAS  Google Scholar 

  • Summerbell D (1974) A quantitative analysis of the effect of excision of the AER from the chick limb bud. J Embryol Exp Morphol 32:651–660

    PubMed  CAS  Google Scholar 

  • Summerbell D, Lewis J, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 224:492–496

    Article  Google Scholar 

  • Sundin OH, Busse HG, Rogers MB, Gudas LJ, Eichele G (1990) Region-specific expression in early chick and mouse embryos of Ghox-lab and Hox 1.6 (Hoxa-1), vertebrate homeobox-containing genes related to Drosophila labial. Development 108:47–58

    PubMed  CAS  Google Scholar 

  • Tabin C (1995) The initiation of the limb bud: growth factors, Hox genes, and retinoids. Cell 80:671–674

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Kagechika H, Hashimoto Y, Shudo K, Oshugi K, Ide K (1990) Synthetic retinoids, retinobenzoic acids, Am80, Am580 and Ch55 regulate morphogenesis in the chick limb bud. Cell Differ Dev 32:17–26

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Tamura K, Ide H (1996) Citral, an inhibitor of retinoic acid synthesis, modifies chick limb development. Dev Biol 175:239–247

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1990) Isolation of 3,4-didehydroretinoic acid, a novel morphognetic signal in the chick wing bud. Nature 345:815–819

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Hoffmann C, Eichele G (1993) 9-cis-retinoic acid, a potent inducer of digit pattern duplications in the chick wing bud. Development 118:957–965

    PubMed  CAS  Google Scholar 

  • Thorns SD, Stocum DL (1984) Retinoic acid-induced pattern duplication in regenerating urodele limb. Dev Biol 103:319–328

    Article  Google Scholar 

  • Tickle C (1981) The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289:295–298

    Article  PubMed  CAS  Google Scholar 

  • Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296:564–566

    Article  PubMed  CAS  Google Scholar 

  • Tickle C, Eichele G (1994) Vertebrate limb development. Annu Rev Cell Biol 10:121–152

    Article  PubMed  CAS  Google Scholar 

  • Tickle C, Lee J, Eichele G (1985) A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development. Dev Biol 109:82–95

    Article  PubMed  CAS  Google Scholar 

  • Umesono K, Giguère V, Glass CK, Rosenfeld MG, Evans RM (1988) Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336:262–265

    Article  PubMed  CAS  Google Scholar 

  • Vallari RC, Pietruszko R (1982) Human aldehyde dehydrogenase: mechanism of inhibition by disulphiram. Science 216:637–639

    Article  PubMed  CAS  Google Scholar 

  • Vasios GW, Gold JD, Petkovich M, Chambon P, Gudas LJ (1989) A retinoic acidresponsive element is present in the 5’ flanking region of the laminin Bl gene. Proc Natl Acad Sci USA 86:9099–9103

    Article  PubMed  CAS  Google Scholar 

  • Viviano CM, Horton CE, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762

    CAS  Google Scholar 

  • Vogel A, Rodriguez C, Izpisúa-Belmonte J-C (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122:1737–1750

    PubMed  CAS  Google Scholar 

  • Wanek et al. (1991)

    Google Scholar 

  • Wang X, Penzes P, Napoli JL (1996) Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. J Biol Chem 271:16288–16293

    Article  PubMed  CAS  Google Scholar 

  • Warkany J, Nelson RC (1940) Appearance of skeletal abnormalities in the offspring of rats reared on a deficient diet. Science 92:383–384

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DC, Ruizi Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, Darnell JEJ (1994) The winged-helix transcription factor HNF3ß is required for notochord development in the mouse embryo. Cell 575–588

    Google Scholar 

  • White JA, Beckett-Jones B, Guo Y-D, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450 (CYP26). J Biol Chem 272:18538–18541

    Article  PubMed  CAS  Google Scholar 

  • White JA, Guo Y-D, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, Dilworth FJ, Jones G, Petkovich M (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271:29922–29927

    Article  PubMed  CAS  Google Scholar 

  • Williams GR, Harney JW, Moore DD, Larsen PR, Brent GA (1992) Differential capacity of wild type promoter elements for binding and trans-activation by retinoic acid and thyroid hormone receptors. Mol Endocrinol 6:1527–1537

    Article  PubMed  CAS  Google Scholar 

  • Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J Anat 92:189–217

    Article  CAS  Google Scholar 

  • Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 42:753–777

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theoret Biol 25:1–47

    Article  CAS  Google Scholar 

  • Yang Y, et al. (1997) Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124:4393–41404

    PubMed  CAS  Google Scholar 

  • Yang Y, Niswander L (1995) Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80:939–947

    Article  PubMed  CAS  Google Scholar 

  • Zgombic-Knight M, Ang HL, Foglio MH, Duester G (1995) Cloning of the mouse class IV alcohol dehydrogenase (retinol dehydrogenase) cDNA and tissue-specific expression patterns of the murine ADH gene family. J Biol Chem 270:10868–10877

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, McCaffery P, Ivins KJ, Neve RL, Hogan P, Chin WW, Dräger UC (1996) Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinal-specific dehydrogenase. Eur J Biochemistry 240:15–22

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, HC., Thaller, C., Eichele, G. (1999). The Role of Retinoids in Vertebrate Limb Morphogenesis: Integration of Retinoid- and Cytokine-Mediated Signal Transduction. In: Nau, H., Blaner, W.S. (eds) Retinoids. Handbook of Experimental Pharmacology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58483-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58483-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63614-1

  • Online ISBN: 978-3-642-58483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics