Skip to main content

Heat-labile uracil-DNA glycosylase from a psychrophilic marine bacterium

  • Chapter
Biotechnological Applications of Cold-Adapted Organisms

Abstract

Uracil DNA glycosylase (UDG, EC 3.2.2.3), also known as uracil-N glycosylase (UNG) is the first enzyme involved in the base repair pathway for removal of uracil from DNA. The base uracil is removed from mutagenic U/G mispairs resulting from the deamination of cytosine and from U:A pairs resulting from misincorporation of dUMP during DNA synthesis.1,2 A mutagenic U/G mismatch leads to a C → T transition mutation in the next round of DNA synthesis. Although uracil is not mutagenic when base-pairing with adenine, uracil in place of thymine in regulatory DNA sequences can disrupt the binding of specific proteins.3 Uracil-DNA glycosylases hydrolyse the N-glycosidic bond linking the base to the deoxyribose sugar, generating an abasic site, which is subsequently removed by an apurinic/apyrimidinic (AP)-endonuclease and a phosphodiesterase. The resultant gap is filled in by a DNA polymerase and sealed by a DNA ligase.3 Uracil-DNA glycosylase shows high selectivity for the excision of uracil from DNA; it removes related bases such as isodialuric acid, 5-hydroxyuracil and alloxan at rates some orders of magnitude lower than with uraci1.4 No activity has been detected against any normal DNA base, nor against uracil in RNA. UNG excises uracil from single-and double-stranded DNA; for double-stranded DNA a preference for certain sequence contexts was shown.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1994; 362:709–715.

    Article  Google Scholar 

  2. Krokan HE, Standal R, Slupphaug G. DNA glycosylases in the base excision repair of DNA. Biochem J 1997; 325:1–16.

    CAS  Google Scholar 

  3. Pu WT, Stuhl K. Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines: the GCN4-DNA complex. Nucl Acids Res 1992; 20:771–775.

    Article  CAS  Google Scholar 

  4. Dizdaroglu M, Karakaya A, Jaruga P, Slupphaug G, Krokan HE. Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage. Nucl Acids Res 1996; 24:418–422.

    Article  CAS  Google Scholar 

  5. Eftedal I, Guddal PH, Slupphaug G, Volden G, Krokan HE. Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucl Acids Res 1993; 21:2095–2101.

    Article  CAS  Google Scholar 

  6. Sawa R, McAuley-Hecht K, Brown T, Pearl L. The structural basis of specific base-excison repair by uracil-DNA glycosylase. Nature 1995; 373:487–493.

    Article  Google Scholar 

  7. Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Nat Acad Sci USA 1974; 71:3649–3653.

    Article  CAS  Google Scholar 

  8. Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B. DNA N-glycosidases. Properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem 1977; 252:3286–3294.

    CAS  Google Scholar 

  9. Cone R, Duncan J, Hamilton L, Friedberg E C. Partial purification and characterization of a uracil DNA N-glycosidase from Bacillus subtilis. Biochemistry 1977; 16:3194–3201.

    Article  CAS  Google Scholar 

  10. Kaboev OK, Luchkina LA, Akhmedow AT, Bekker ML. Uracil-DNA glycosylase from Bacillus stearothermophilus. FEBS Lett 1981; 132:337–340.

    Article  CAS  Google Scholar 

  11. Leblanc JP, Martin B, Cadet J, Laval J. Uracil-DNA glycosylase: purification and properties of uracil-DNA glycosylase from Micrococcus luteus. J Biol Chem 1982; 257:3477–3483.

    CAS  Google Scholar 

  12. Williams MV, Pollack JD. A mollicute (mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase. J Bacteriol 1990; 172:2979–2985.

    CAS  Google Scholar 

  13. Kaboev OK., Luchkina LA, Kuziakina TI. Uracil-DNA glycosylase of thermophi1ic Ther-mothrix thiopara. J Bacteriol 1985; 164:421–424.

    CAS  Google Scholar 

  14. Sobek H, Schmidt M, Frey B, Kaluza K. Heat-labile uracil DNA glycosylase: purification and characterization. FEBS Lett 1996; 388:1–4.

    Article  CAS  Google Scholar 

  15. Krokan H, Wittwer CU. Uracil DNA-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs Nucl Acids Res 1981; 9:2599–2613.

    CAS  Google Scholar 

  16. Crosby B, Prakash L, Davis H, Hinkle DC. Purification and characterization of a uracil-DNA glycosylase from the yeast, Saccharomyces cerevisiae. Nucl Acids Res 1981; 9:5797–5809.

    Article  CAS  Google Scholar 

  17. Mol CD, Arvai AS, Slupphaug G, Kavil B,, Alseth I, Krokan HE, Tainer J A. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 1995; 80:869–878.

    CAS  Google Scholar 

  18. Slupphaug G, Mol C D, Kavil B, Arvai A S, Krokan HE, Tainer JA. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996; 384:87–92.

    Article  CAS  Google Scholar 

  19. Andersson B, Povellini CM, Wentland MA, Shen Y, Muzny DM, Gibbs RA. Adaptor-based uracil DNA glycosylase cloning simplifies shotgun libraray construction for large-scale sequencing. Anal Biochem 1994; 218:300–308.

    Article  CAS  Google Scholar 

  20. Rashtchian A, Buchman GW, Schuster DM, Berninger MS. Uracil DNA glycosylase-mediated cloning of polymerase chain reaction-amplified DNA: application to genomic and cDNA cloning. Anal Biochem 1992; 206:91–97.

    Article  CAS  Google Scholar 

  21. Kumar NV, Varshney U. Excision of uracil from the ends of double stranded DNA by uracil DNA glycosylase and ist use in the high efficiency cloning of PCR products. Curr Sci 1994; 67:728–734.

    CAS  Google Scholar 

  22. Liu HS, Tzeng HC, Liang YJ, Chen CC. Ligation of multiple DNA fragments through uracilDNA glycosylase generated ligation sites. Nucl Acids Res 1994; 22:4016–4017.

    Article  CAS  Google Scholar 

  23. Craig AG, Nizetic D, Lehrach H. Labeling oligonucleotides to high specific activity. Nucl Acid Res 1989; 17:4605–4610.

    Article  CAS  Google Scholar 

  24. Ball JK, Desselberger U. The use of uracil-N-glycosylase in the preparation of PCR products for direct sequencing. Nucl Acids Res 1992; 20:3255.

    Article  CAS  Google Scholar 

  25. Devchand PR, McGhee JD, van de Sande JH. Uracil-DNA glycosylase as a probe for protein-DNA interactions. Nucl Acids Res 1993; 21:3437–3443.

    Article  CAS  Google Scholar 

  26. Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 1990; 93:125–128.

    Article  CAS  Google Scholar 

  27. Udaycumar, Epstein JS, Hewlett IK. A novel method employing UNG to avoid carry-over contamination in RNA-PCR. Nucl Acids Res 1993; 21:3917–3918.

    Article  Google Scholar 

  28. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature 1989; 339:237–238.

    Article  CAS  Google Scholar 

  29. Thornton CG, Hartley JL, Rashtchian A. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: characterization of residual UDG activity following thermal cycling. BioTechniques 1992; 13:180–183.

    CAS  Google Scholar 

  30. Duncan B, Chambers JA. The cloning and overproduction of Escherichia coli uracil-DNA glycosylase. Gene 1984; 28:211–219.

    Article  CAS  Google Scholar 

  31. Varshney U, Hutcheon T, van de Sande JH. Sequence analysis, expression, and conservation of Escherichia coli uracil DNA glycosylase and its gene (ung). J Biol Chem 1988; 263:7776–7784.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sobek, H. (1999). Heat-labile uracil-DNA glycosylase from a psychrophilic marine bacterium. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics