Skip to main content

Quantifying Ecosystem Maturity — a Case Study

  • Conference paper
Eco Targets, Goal Functions, and Orientors

Abstract

In this paper Odum’s maturity concept, which is one of the basic sources of the orientor and goal function approach, is analyzed on the basis of empirical data from the terrestrial sites of the project “Ecosystem Research in the Bornhöved Lakes District”. The maturity concept is linked with the thermodynamic non-equilibrium principle. Both theories are tested on three levels: ecosystems, plant community succession, and microbial processes. Specific indicators are used to test the hypotheses. Instead of a continuous long-term observation of one ecosystem, different neighboring developmental stages are compared. In all cases it is obvious that the empirical data support the hypotheses: There are ecosystem properties which are regularly optimized throughout a normal ecosystem development. These potential indicators can be taken to proof the ecological significance of the non-equilibrium principle of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JPE, Domsch KH (1978) A physiological method for measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1986) Carbon assimilation and microbial activity in soils. Zeitschrift für Pflanzenernährung und Bodenkunde 149:457–468

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Baird D, McGlade JM, Ulanowicz RE (1991) The comparative ecology of six marine ecosystems. Phil Trans R Soc London 333:15–29

    Article  Google Scholar 

  • Brink B ten (1991) The AMOEBA approach as a useful tool for establishing sustainable development? In: Kuik O, Verbruggen H (eds): In search of indicators of sustainable development. Kluwer, Dordrecht, pp 71–87

    Chapter  Google Scholar 

  • Branding A (1997) Die Bedeutung der atmosphärischen Deposition für die Forst-und Agrarökosysteme der Bornhöveder Seenkette. Eco Sys Suppl 14:1–122

    Google Scholar 

  • Breckling B (1992) Uniqueness of ecosystems versus generalizability and predictability in ecology. Ecological Modelling 63:13–27

    Article  Google Scholar 

  • Christensen V (1992) Network analysis of trophic interactions in aquatic ecosystems. PhD Thesis, Royal Danish School of Pharmacy, Copenhagen

    Google Scholar 

  • Costanza R, Norton BG, Haskell BD (eds.) (1992): Ecosystem health. New goals for environmental management. Island Press, New York

    Google Scholar 

  • De Jong F (1992) Ecological quality objectives for marine coastal waters: the Wadden sea experience. Internat J estuar Coast Law 7/4:255–276

    Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie: Grundlagen und Methoden. Ulmer, Stuttgart

    Google Scholar 

  • Dierssen K (1990) Einführung in die Pflanzensoziologie (Vegetationskunde). Wissenschaftliche Buchgesellschaft. Darmstadt

    Google Scholar 

  • Dilly O (1994) Mikrobielle Prozesse in Acker-, Grünland-und Waldböden. Eco Sys Suppl 8:1127

    Google Scholar 

  • Dilly O, Munch JC (1995a) Ecological meanings of different methods for the estimation of microbial biomass and activity in soils. Abstracts. 7th International Symposium on Microbial Ecology, Santos (Brasil), p 84

    Google Scholar 

  • Dilly O, Munch JC (1995b) Microbial biomass and activities in partly hydromorphic agricultural and forest soils in the Bornhöved Lake Region of Northern Germany. Biology and Fertility of Soils 19:343–347

    Article  Google Scholar 

  • Elliott ET (1997) Rationale for developing bioindicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health, CAB International, Wallingford, pp 49–78

    Google Scholar 

  • Eschenbach C (1996) Zur Ökophysiologie der Primärproduktion der Schwarzerle. In: Pfadenauer J et al. (eds) Verhandlungen der Gesellschaft für Ökologie, Band 26. Fischer, Stuttgart, pp 89–95

    Google Scholar 

  • Eschenbach C, Middelhoff U, Steinborn W, Wötzel J, Kutsch W, Kappen L (1997) Von Einzelprozessen zur Kohlenstoffbilanz eines Erlenbruchs im Bereich der Bornhöveder Seenkette. Eco Sys Suppl 20:121–132

    Google Scholar 

  • FAO (1988) Soil map of the world. Revised legend. World soil resources report 60. Rome

    Google Scholar 

  • Gansert D (1995) Die Wurzel-und Sproßrespiration junger Buchen (Fagus sylvatica L.) in einem montanen Moder-Buchenwald. Cuvillier, Göttingen

    Google Scholar 

  • Gerson U, Chet I (1981) Are allochthonous and autochtonous soil microorganisms r-and K-selected? Rev Écol Biol Sol 18:285–289

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, London

    Google Scholar 

  • Hanssen U, Hingst R (1995) Einfluß systementlastender Nutzungsformen auf die biozönotische Struktur im Feuchtgrünland. Mitt DGaaE 9:475–480

    Google Scholar 

  • Heal, OW, Dighton, J (1986) Nutrient cycling and decomposition in natural terrestrial ecosystems. In: Mitchell, MJ, Nakas, JP (eds): Microfloral and faunal interactions in natural and agro ecosystems. Nijhoff & Junk Dordrecht, pp 14–73

    Chapter  Google Scholar 

  • Herbst M (1995) Stomatal behaviour in a beech canopy: an analysis of Bowen ratio measurements compared with porometer data. Plant, Cell and Environment 18:1010–1018

    Article  Google Scholar 

  • Herbst M (1997) Die Bedeutung der Vegetation für den Wasserhaushalt ausgewählter Ökosysteme. PhD-Thesis, University of Kiel

    Google Scholar 

  • Herbst M, Vanselow R (1997) Transpiration, Bodenverdunstung und Gesamtverdunstung in einem Maisfeld - gleichzeitige Messungen auf verschiedenen Maßstabsebenen. Eco Sys Suppl 20:71–77

    Google Scholar 

  • Herendeen R (1989) Energy intensity, residence time, exergy, and ascendency in dynamic ecosystems. Ecol Model 48:19–44

    Article  Google Scholar 

  • Hörmann G, Irmler U, Müller F, Piotrowski J, Pöpperl R, Reiche EW, Schernewski G, Schimming CG, Schrautzer J, Windhorst W (1992) Ökosystemforschung im Bereich der Bornhöveder Seenkette. Arbeitsbericht 1988–1991. Eco Sys 1:1–338

    Google Scholar 

  • Hoffmann F (1995) FAGUS, a model for growth and development of beech. Ecol Model 83:327–348

    Article  CAS  Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Article  Google Scholar 

  • Irmler U (1995) Die Stellung der Bodenfauna im Stoffhaushalt schleswig-holsteinischer Wälder. Faun Ökol Mitt 18:1–200

    Google Scholar 

  • Jörgensen SE (1992) Integration of Ecosystem Theories: a Pattern. Kluwer Academic Publ, Dordrecht

    Book  Google Scholar 

  • Kappen L, Kutsch WL, Müller F, Eschenbach C (in print). Hierarchical process interactions in the terrestrial carbon cycle. submitted to Ecological Modelling

    Google Scholar 

  • Kutsch WL (1996) Untersuchungen zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. Eco Sys Suppl 16:1–125

    Google Scholar 

  • Kutsch WL, Kappen L (1997) Aspects of carbon and nitrogen cycling in soils of the Bornhöved lake district. II. Modelling the influence of temperature increase on soil respiration and or-ganic carbon content in soils under different managements. Biogeochemistry 39:207–224

    Article  Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen. Ulmer, Stuttgart

    Google Scholar 

  • Lenfers UA (1994) Stoffeintrag durch Streufall in verschiedenen Waldökosystemen im Bereich der Bornhöveder Seenkette. Diploma-Thesis, University of Kiel

    Google Scholar 

  • Lilienfein M (1991) Zum Stofftransport in der wasserungesättigten Zone und im Grundwasser im Bereich der Bornhöveder Seenkette. PhD-Thesis, University of Kiel

    Google Scholar 

  • Lüdi W (1930) Die Methoden der Sukzessionsforschung in der Pflanzensoziologie. Handb biol Arbeitsmeth 11(5):527–728. Berlin, Wien

    Google Scholar 

  • May RM (1980) Theoretische Ökologie. Verlag Chemie, Weinheim

    Google Scholar 

  • Mette R (1994) Ertragsstruktur und Mineralstoffaufnahme von Mais und Hafer im Einflußbereich von Wallhecken. Verlag UE Gratiner. Stuttgart

    Google Scholar 

  • Müller F (1996) Emergent properties of ecosystems — consequences of self-organizing processes? Senckenbergiana maritima 27:151–168

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Rambow K (1995) Untersuchungen zum Stoffverhalten in einer forstlich und einer landwirtschaftlich genutzten Braunerde im Bereich der Bornhöveder Seenkette - Messung und Simulation. PhD-Thesis, University of Kiel

    Google Scholar 

  • Rapport DJ, McCullum J, Miller MH (1997) Soil health: ist relationship to ecosystem health. In: Pankhurst CE, Doube BM, Gupta, VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 29–47

    Google Scholar 

  • Reiche EW, Schimming CG, Mette R, Schrautzer J (1996). Nitrogen balances of ecosystems, landscapes, and watersheds. In: Von Cleemput et al. (eds) Progress in Nitrogen Cycling Studies. Kluwer Academic Publ, Dordrecht, pp 365–369

    Chapter  Google Scholar 

  • Reiche EW, Müller F, Kerrinnes A, Dibbern I (in print) Components of heterogenity in forest soils and understorey communities. In: Tenhunen JD (ed) Ecosystem properties and landscape function in Central Europe, Ecological Studies, Springer, Heidelberg

    Google Scholar 

  • Sach W (1997) Vegetation und Nährstoffdynamik unterschiedlich genutzten Grünlandes in Schleswig-Holstein. PhD-Thesis, University of Kiel

    Google Scholar 

  • Schaefer W (1991) Automatische Erfassung von Umweltdaten in der “Ökosystemforschung im Bereich der Bornhöveder Seenkette”. Proceedings 6. Symposium “Informatik für den Umweltschutz”, Informatik-Fachberichte 296:211–220

    Article  Google Scholar 

  • Schimming CG, Mette R, Reiche EW, Schrautzer J, Wetzel H (1995) Stickstoffflüsse in einem typischen Agrarökosystem Schleswig-Holsteins. Meßergebnisse, Bilanzen, Modellvalidierung. Z Pflanzenernähr Bodenk 158:313–322

    Article  CAS  Google Scholar 

  • Schimming CG, Schrautzer J, Reiche EW, Munch JC (in print) Nitrogen retention and loss from ecosystems of the Bornhöved Lakes Region. In: Tenhunen JD (ed) Ecosystem properties and landscape function in Central Europe, Ecological Studies, Springer, Heidelberg

    Google Scholar 

  • Schleuß U (1992) Böden und Bodenschaften einer norddeutschen Moränenlandschaft. Eco Sys Suppl 2:1–185

    Google Scholar 

  • Schneider ED (1988) Thermodynamics, information, and evolution: new perspectives on physical and biological evolution. In: Weber BH, Depew DJ, Smith JD (eds) Entropy, Information, and Evolution: New Perspectives on Physical and Biological Evolution. Cambridge Univ Press, Cambridge, pp 108–138

    Google Scholar 

  • Schneider ED, Kay JJ (1994) Life as a manifestation of the second law of thermodynamics. Math Comput Model 19:25–48

    Article  Google Scholar 

  • Schrautzer J, Asshoff M, Müller F (1996) Restoration strategies for wet grasslands in Northern Germany. Ecol Engineering 7:255–278

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace, JS (1985) Evaporation from sparse crops — an energy combination theory. Quaterly Journal of the Royal Meteorological Society 111:839–855

    Article  Google Scholar 

  • Spranger T (1992) Erfassung und ökosystemare Bewertung der atmosphärischen Deposition und weiterer oberirdischer Stoffflüsse im Bereich der Bornhöveder Seenkette. Eco Sys Suppl 4:1–153

    Google Scholar 

  • Ulanowicz RE (1986) Growth and development: Ecosystem phenomenology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19:703–707.

    Article  CAS  Google Scholar 

  • Wachendorf C (1996) Eigenschaften und Dynamik der organischen Bodensubstanz ausgewählter Böden unterschiedlicher Nutzung einer norddeutschen Moränenlandschaft. Eco Sys Suppl 13:1–130

    Google Scholar 

  • Weisheit K (1995) Kohlenstoffdynamik am Grönlandstandort — untersucht an vier dominanten Grasarten. PhD-Thesis, University of Kiel

    Google Scholar 

  • Wetzel H (1997) Prozeßorientierte Deutung der Kationendynamik von Braunerden als Glieder von Acker-und Waldcatenen einer norddeutschen Jungmoränenlandschaft — Bornhöveder Seenkette. PhD-Thesis, University of Kiel, Kiel

    Google Scholar 

  • Witthaker RH (1975) Communities and Ecosystems. Macmillan Publ, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutsch, W.L., Dilly, O., Steinborn, W., Müller, F. (1998). Quantifying Ecosystem Maturity — a Case Study. In: Müller, F., Leupelt, M. (eds) Eco Targets, Goal Functions, and Orientors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58769-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58769-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63720-9

  • Online ISBN: 978-3-642-58769-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics