Skip to main content

Modal gating of sodium channels and possible physiological lmplications on hereditary myopathies

  • Chapter
Neural Circuits and Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 167))

Abstract

Three human genetic syndromes hyperkalemic periodic paralysis, paramyotonia congenita and potassium aggravated myotonia, have been associated in recent years with mutations of the gene SCN4A located in chromosome 17q (23.1 to 25.2) which encodes the α-subunit of the voltage-gated sodium channel of the adult skeletal muscle Barchi 1995; Cannon 1996; George 1995; Hoffman et al. 1995; Lehmann-Horn and Rüidel 1996). The 17 single-point mutations identified to date in SCN4A are spread over both cytoplasmic and extracellular regions of the polypeptide, some near the voltage sensors others near the putative inactivation domain, and do not show any obvious clustering pattern associated with distinctive clinical features. A leading pattern is missing also in the correlation of clinical syndromes and electrophysiological properties of thel0 mutations studied so far in situ (Cannon et al. 1991; Lerche et al. 1993) or in heterologous expression (Cannon and Strittmatter 1993; Hoffman et al. 1995; Ji et al. 1996; Mitrovic et al. 1995; Mitrovic et al. 1994; Mitrovic et al. 1993). The most obvious abnormalities (notably a slightly slower and incomplete inactivation) can account for muscle hyperexcitability and repetitive firing instead of normal action potentials (Cannon et al., 1993b), and are consistent with the realatively mild and episodic character of the disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong C.M. and Cota G. 1989. Calcium ion as a cofactor in Na channel gating. Proc. Natl. Acad. Sci. U.S.A. 88:6528–6531.

    Article  Google Scholar 

  • Auld V.J., Goldin A.L., Krafte D.S., Marshall J., Dunn J.M., Catteral W.A., Lester H.A., Davidson N. and Dunn R.J. 1988. A rat brain Na+ channel α subunit with novel gating properties. Neuron 1:449–61.

    Article  Google Scholar 

  • Baglietto L. 1993. Studio dei fenomeni di inattivazione del canale al sodio espresso in ovociti di rana. Tesi di Laurea in Fisica. Facoltà di Scienze Matematiche Fisiche e Naturali. Università di Genova Genova.

    Google Scholar 

  • Barchi R.L. 1995. Molecular pathology of the skeletal muscle sodium channel Ann Rev Physiol 57:355–385.

    Article  Google Scholar 

  • Bennet Jr P.B., Makita N. and George Jr A.L. 1993. A molecular basis for gating mode transitions in human skeletal muscle Na+ channels. FEBS Lett. 326:21–24.

    Article  Google Scholar 

  • Boccaccio A., Moran O. and Conti F. 1998. Calcim dependent shifts of Na+ channel activation correlated with the state dependence of calcium-binding to the pore. Eur. Biophys. J. in press

    Google Scholar 

  • Cannon S.C. 1996. Sodium channel defects in myotonia and periodic paralysis. Ann. Rev. Neurosci. 19:141–164.

    Article  Google Scholar 

  • Cannon S.C., Brown R.H. and Corey D.P. 1991. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced faliure of inactivation. Neuron 6:619–626.

    Article  Google Scholar 

  • Cannon S.C., Brown R.H. and Corey D.P. 1993b. Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels Biophys. J. 65:270–288.

    Article  Google Scholar 

  • Cannon S.C., McClatchey A.I. and Gusella J.F. 1993a. Modification of the Na+ current conducted by the rat skeletal muscle a subunit by coexpression with a human brain ß subunit.

    Google Scholar 

  • Cannon S.C. and Strittmatter S.M. 1993. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 10:317–26.

    Article  Google Scholar 

  • Chahine M., Bennet P.B., George Jr A.L. and Horn R. 1994. Functional expression and properties of human skeletal muscle sodium channel. Pflügers Arch. 427:136–142.

    Article  Google Scholar 

  • Cohen-Armon M., Sokolovsky M. and Dacal N. 1989. Modulation of the voltage depepndet sodium channel by agents affecting G-proteins: a study in Xenopus oocytes injected with brain RNA. Brain Res. 496:197–203.

    Article  Google Scholar 

  • Gellens M.E., George Jr A.L., Chen L.Q., Chahine M., Horn R., Barchi R.L. and Kallen R.G. 1992. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. U.S.A. 89: 554–8.

    Article  Google Scholar 

  • George A.L. 1995. Molecular genetics of ion channel diseases. Kidney International 48:1180–1190.

    Article  Google Scholar 

  • Hamill O., Marty A., Neher E., Sakmann B. and Sigworth F. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflug. Arch. 391:85–100.

    Article  Google Scholar 

  • Hille B. 1992. Ionic channels of excitable membranes. Sinauer Sunderland Mass:.

    Google Scholar 

  • Hoffman E.P., Lehmann-Horn F. and Rudel R. 1995. Overwcited or inactive: Ion channels in muscle disease. Cell 80:681–686.

    Article  Google Scholar 

  • Isom L.L., Ragsdale D.S., De Jongh K.S., Westenbroek R.E., Reber B.F., Scheuer T. and Catterall W.A. 1995b. Structure and function of the beta 2 subunit of brain sodium channels a transmembrane glycoprotein with CA motif. Cell 83:433–442.

    Article  Google Scholar 

  • Isom L.L., Scheuer T., Brownstein A.B., Ragsdale D.S., Murphy B.J. and Catterall W.A. 1995. Functional coexpression of the β1 and type IIA α subunits of socium channels un mammalian cell line. J. Biol. Chem. 270:3306–3312.

    Article  Google Scholar 

  • Ji S., George A.L., Horn R. and Barchi R.L. 1996. Paramyotonia congenita mutations reveal different roles for segments S3 and S4 of domain D4 in hSkM1 sodium channel gating. J. Gen. Physiol. 107:183–194.

    Article  Google Scholar 

  • Ji S., Sun W., George Jr A.L., Horn R. and Barchi R.L. 1994. Voltage-dependent regulation of modal gating in the rat SkM1 sodium channel expressed in Xenopus oocytes. J. Gen. Physiol. 104:625–643.

    Article  Google Scholar 

  • Lehmann-Horn F. and Rüdel R. 1996. Molecular pathophysiology of voltage-gated ion channels. Rev. Physiol. Biochem. Pharmacol. 128:159–268.

    Google Scholar 

  • Lerche H., Heine R., Pika U., George A., Mitrovic N., Browatzki M., Weiss T., Rivet-Bastide M., Franke C., Lomonaco M., Ricker K. and Lehmann-Horn F. 1993. Human sodium channel myotonia: slowed channel inactivation due to substitution of a glycine within the II-IV linker. J. Physiol. 470:13–22.

    Google Scholar 

  • Li M., West J.W., Lai Y., Scheuer T. and Catterall W.A. 1992. Functional modulation of brain sodium channels by cAMP-dependent phosphorilation. Neuron 8:1151–1159.

    Article  Google Scholar 

  • Liman E.R., Tytgat J. and Hess P. 1992. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–71.

    Article  Google Scholar 

  • Ma J.Y., Li M. and Catterall W.A. 1994. Modulation of rat brain Na+ channels by a G-protein coupled pathway. Proc. natl. Acad. Sci. USA 91:12351–12355.

    Article  Google Scholar 

  • Makielski J.C., Limberis J.T., Chang S.Y., Fan Z. and Kyle J.W. 1996. Coexpression of β1 with cardiac sodium channel α subunits in oocytes decreases lidocaine block. Mol. Pharmacol. 49:30–39.

    Google Scholar 

  • Makita N., Bennet Jr P.B., and George Jr A.L. 1996. Multiple domains contribute to the distinct inactivation properties of human heart and skeletal muscle Na+ channels. Circ. Res. 78:244–252.

    Article  Google Scholar 

  • McDonald T.F., Pelzer S., Trautwein W. and Pelzer D.J. 1994. Regulation and modulation of calcium channels in cardiac skeletal and smooth muscle cells. Physiol. Rev. 74:365–507.

    Google Scholar 

  • Mitrovic N., George A.L., Lerche H., Wager S., Fhalke C. and Lehmann-Horn F. 1995. Different effect on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J. Physiol. 487: 107–114.

    Google Scholar 

  • Mitrovic N., George A.L.J., Heine R., Wagner S., Pika S., Hartlaub U., Zhou M. and Lerche H. 1994. K(+) aggravated myotonia:destabilisation of the inactivated state of the human muscle Na+ channel by V1549M mutation. J. Physiol. 478:395–402.

    Google Scholar 

  • Mitrovic N., Quasthoff.S. and Grafe P. 1993. Sodium channel inactivation kinetics of rat sensory and motor nerve fibres and their modulation by glutathione. Pflügers Arch. 425:453–461.

    Article  Google Scholar 

  • Moorman J R, Kirsch G.E., VanDongen A.M.J., Joho R.H. and Brown A.M. 1990. Fast and slow gating of sodium channels encoded by a single mRNA. Neuron 4:243–52.

    Article  Google Scholar 

  • Moran O., Gheri A., Zegarra-Moran O., Imoto K. and Conti F. 1994. Proline mutations on the S4 segment of brain sodium channel II. Biochem. Biophys. Res. Comm. 202:

    Google Scholar 

  • Nilius B. 1988. Modal gating behaviour of cardiac sodium channels in cell-free membrane patches. Biophys. J. 53:857–62.

    Article  Google Scholar 

  • Numann R., Catterall W.A. and Scheuer T. 1991. Functional modulation of brain sodium channels by protein kinase C phosphorilation. Science 254:115–118.

    Article  Google Scholar 

  • Patton D.E., Isom L.L., Catterall W.A. and Goldin A.L. 1994. The adult rat brain ßi subunit modifies activation and inacivation gating of multiple sodium channel a subunits. J. Biol. Chem. 269:17640–17655.

    Google Scholar 

  • Pusch M. 1990. Divalent cations as probes for structure-function relationships of cloned voltage-dependent sodium channels. Eur. Biophys. J. 18:327–333.

    Google Scholar 

  • Ruppersberg J.P., Stocker M., Pongs O., Heinemann S.H., Frank R. and Koenen M. 1991. Regulation of fast inactivation of cloned mammalian Ik(A) channels by cysteine oxidation. Nature 352:711–14.

    Article  Google Scholar 

  • Stühmer W. 1992. Electrophysiological recording of Xenopus oocytes. In Methods in Enzymology: Ion Channels B. Rudy and L.E. Iverson. Academic Press London. 319–339.

    Chapter  Google Scholar 

  • Trimmer J.S., Cooperman S.S., Tomiko S.A., Zhou J., Crean S.M., Boyle M.B., Kallen R.G., Sheng Z., Barchi R.L., Sigworth F.J., Goodman R.H., Agnew W.S. and Mandel G. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33­49.

    Article  Google Scholar 

  • Udovina A.I., Shander G.S. and Makielski J.C. 1995. Cytoskeleton modulates gating of voltage-dependent sodium channel in heart. Am. J. Physiol. 269:H203–H214.

    Google Scholar 

  • Wickman K. and Clapham D.E. 1995. Ion channel regulation by G proteins. Physiol. Rev 75:865–885.

    Google Scholar 

  • Zhou J., Potts J.F., TrimmerJ S., W S. A and F.J S. 1991. Multiple gating modes and the effect of modulating factors on the μ1 sodium channel. Neuron 7:775–785.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moran, O., Nizzari, M., Conti, F. (1998). Modal gating of sodium channels and possible physiological lmplications on hereditary myopathies. In: Torre, V., Nicholls, J. (eds) Neural Circuits and Networks. NATO ASI Series, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58955-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58955-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63801-5

  • Online ISBN: 978-3-642-58955-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics