Skip to main content

Regulation by Intracellular Calcium of the Activity of GABAA Receptors in Two Different Types of Neurons

  • Chapter
Neural Circuits and Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 167))

Abstract

The levels of intracellular free calcium in nerve cells are critical for the activity of many enzymes and for several cell functions such as, for example exocytosis [2] and its regulation [7]. Free calcium levels are regulated by buffering systems compartmentation and extrusion from the cell. Calcium entry into nerve cells is also of importance in the regulation of gene expression. In particular in hippocampal cells it has been demonstrated that according to the route of calcium entry different genes are activated [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Baling H. Ginty D.D. Greenberg M.E.: Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260 161-­165 (1993).

    Article  Google Scholar 

  2. Burgoyne R.D. Morgan A Regulated exocytosis. Biochem. J. 293 305–316 (1993).

    Google Scholar 

  3. Chen Q.X. Wong R.K.S.: Suppression of GABAA receptor responses by NMDA application in hippocampal neurons acutely isolated from the adult guinea pig. J.Physiol. 482 353–362 (1995).

    Google Scholar 

  4. Collingridge G.L. Bliss T.V.P.: Memories of NMDA receptors and LTP. TINS 18 54–56 (1995).

    Google Scholar 

  5. De Schutter E.: Cerebellar long -term depression might normalize excitation of Purkinje cells: a hypothesis. TINS 18 291–295 (1995).

    Google Scholar 

  6. Enan E. Matsumura F.: Specific inhibition of calcineurin by type II synthetic pyrethroid insecticides. Biochem. Pharm. 43 1777–1784 (1992).

    Google Scholar 

  7. Greengard P. Valtorta F. Czernik A.C. Benfenati F.: Synaptic vesicles phosphoproteins and regulation of synaptic function. Science 259 780–785 (1993).

    Article  Google Scholar 

  8. Hydén H. Cupello A. Palm A. Gamma-amino-butyric acid stimulated chloride permeability across microdissected Deiters’ neuronal membrane. Brain Res. 379 167–170 (1986).

    Article  Google Scholar 

  9. Inoue M. Oomura Y. Yakushiji T. Akaike N.: Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324 156–158 (1985).

    Article  Google Scholar 

  10. Kano M. Rexhausen U. Dreessen J. Konnerth A.: Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356 601–604 (1992).

    Article  Google Scholar 

  11. Kyrozis, A., Goldstein, P.A., Heath. M.J.S., Mc Dermott, M.J.S.: Calcium entry through a subpopulation of AMPA receptors desensitized neighbouring NMDA receptors in rat dorsal horn neurons. J. Physiol. 485 373–381 (1995).

    Google Scholar 

  12. Levi G. Aloisi F. Ciotti M.T. Gallo V.: Autoradiographic localization and depolarization-induced release of amino acids in differentiating granule cell cultures. Brain Res. 290 77–86. (1984).

    Article  Google Scholar 

  13. Medina I. Filippova N. Barbin G. Ben-Ari Y. Bregestovski P.: Kainate­induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons. J. Neurophysiol. 72 456–465 (1994).

    Google Scholar 

  14. Nairn A.C. Shenolikar S.: The role of protein phosphatases in synaptic transmission plasticity and neuronal development. Curr. Opin. Neurobiol. 2 296­-301 (1992).

    Article  Google Scholar 

  15. Ragozzino D. Eusebi F.: Inhibition of GABA and glycine responses by glutamate in rat hippocampal neurons. Brain Res. 628 115–120 (1993).

    Article  Google Scholar 

  16. Rapallino M.V. Cupello A. Hydén H.: Direct evidence for the presence of GABAA receptors on the cytoplasmic side of the Deiters’ neuron plasma membrane. Brain Res. 462 350–353 (1988).

    Article  Google Scholar 

  17. Robello M. Amico C. Cupello A.: A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells. Eur. Biophys. J. 25 181–187 (1997).

    Article  Google Scholar 

  18. Robello M. Amico C. Cupello A.: Regulation mechanisms of GABA receptor function in cerebellar granule cells in culture: possible differential involvement of kinase activities. Neuroscience 53 131–138 (1993).

    Article  Google Scholar 

  19. Rosenmund C. Feltz A. Westbrook G.L.: Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophys. 73 427–430 (1995).

    Google Scholar 

  20. Schwartz R.D. Wagner. J.P. Yu X. Martin D.: Bidirectional modulation of GABA-gated chloride channels by divalent cations: inhibition by Ca2+ and enhancement by Mg2+. J. Neurochem. 62 916–922 (1994).

    Article  Google Scholar 

  21. Skutella M. Ruegg U.T.: Increase of empty pool-activated Ca2+ influx using an intracellular Ca2+ chelating agent. Biochem. Biophys. Res. Comm. 218 837-­841 (1996).

    Article  Google Scholar 

  22. Stelzer A. Simon G. Kovacs G. Rai R.: Synaptic disinhibition during maintenance of long-term potentiation in the CA1 hippocampal subfield. P.N.A.S. USA 91 3058–3062 (1994).

    Article  Google Scholar 

  23. Stelzer A. Shi H.: Impairment of GABAA receptor function by N-methyl-D­aspartate mediated calcium influx in isolated CAI pyramidal cells. Neuroscience 62 813–828 (1994).

    Article  Google Scholar 

  24. Stephenson F.A.: The GABAA receptors. Biochem. J. 310 1–9 (1995).

    Google Scholar 

  25. Taleb O. Trouslard J. Demeneix B.A. Feltz P. Bossu J.L. Feltz A.: Spontaneous and GABA-evoked chloride channels on pituitary intermediate lobe cells and their internal Ca requirements. Pflugers. Archiv. 409 620–623 (1987).

    Google Scholar 

  26. Wigstrom A. Gustafsson B.: Facilitation of hippocampal long-lasting potentiation by GABA antagonists. Acta Physiol. Scand. 125 159–172 (1985).

    Google Scholar 

  27. Zorumski C.F. Mennerick S. Que J.: Modulation of excitatory synaptic transmission by low concentrations of glutamate in cultured rat hippocampal neurons. J.Physiol. 494 465–477 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cupello, A., Hydén, H., Rapallino, M.V., Robello, M. (1998). Regulation by Intracellular Calcium of the Activity of GABAA Receptors in Two Different Types of Neurons. In: Torre, V., Nicholls, J. (eds) Neural Circuits and Networks. NATO ASI Series, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58955-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58955-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63801-5

  • Online ISBN: 978-3-642-58955-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics