Skip to main content

Zur Biogeochemie und Bilanzierung von Schwermetallen in der Ostsee

  • Chapter
Geochemie und Umwelt

Zusammenfassung

Das einzigartige Eiszeitprodukt „Ostsee“ ist ein erdgeschichtlich junges (ca. 10 000 a) intraeuropäisches, epikontinentales Brackwassermeer mit einem Wasservolumen von 21 721 km3 und einer Fläche von 415 266 km2 (Håkanson 1993). Als flaches (mittlere Tiefe: 52,3 m) und praktisch gezeitenloses (der Tidenhub in der Beltsee liegt bei < 0,1–0,2 m) Nebenmeer des Nordostatlantik steht sie mit diesem über Skagerrak/Nordsee im Wasseraustausch, der jedoch durch Meerengen (Großer Belt, Kleiner Belt und Öresund) und Schwellen (Wassertiefe zum Sattelscheitel: Darß-Møn-Schwelle 18 m, Drodgen-Schwelle — Südausgang Oresund — 6 m) behindert wird (Abb. 17.1). Die sich daraus ergebende relativ lange Verweilzeit des Wassers führt zur Akkumulation von Verunreinigungen, die vor allem aus den neun hoch-industrialisierten Küstenstaaten und der Atmosphäre eingetragen werden. Das rund 1,73 • 106 km2 große und von etwa 80 Millionen Menschen besiedelte Wassereinzugsgebiet (100%) umfaßt jedoch nicht nur die gesamten Territorien Estlands (2,6%), Lettlands (3,7%) und Litauens (3,8%), praktisch ganz Polen (17,8%), Schweden (25,3%) und Finnland (17,5%) sowie Teile Deutschlands (1,5%), Dänemarks (1,7%) und Rußlands (18,7%), sondern auch Gebiete von nicht an die Ostsee grenzenden Staaten (Norwegen: 0,8%, Slowakien/Tschechien: 0,8%, Ukraine: 0,9% und Weißrußland: 4,9%). Die Quellen atmosphärischer Verunreinigungen lassen sich sogar bis in außereuropäische Regionen zurückverfolgen (HELCOM 1991; Petersen u. Krüger 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • van Aalst RM. van Ardenne RAM, de Kruk FJ, Lems T (1983) Pollution of the North Sea from the atmosphere. TNO Report C182: 152 S.

    Google Scholar 

  • Ahl T (1977) River discharges of Fe, Mn, Cu, Zn, and Pb into the Baltic Sea from Sweden. Ambio Special Report 5: 219–228

    CAS  Google Scholar 

  • Ahner BA, Price NM. Morel FMM (1994) Phytochelatin production by marine phytoplankton at low free metal ion concentrations: Laboratory studies and field data from Massachusetts Bay. Proc Natl Acad Sci 91: 8433–8436

    CAS  Google Scholar 

  • Anderson, MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature 276: 70–71

    Article  CAS  Google Scholar 

  • Anonym (1995) Fatal outcome of negotiations for Baltic salmon and cod. WWF Baltic Bull 4–5/95: 5–9

    Google Scholar 

  • Aunela, Larjava (1990) zitiert in: Kenttämies K (ed; 1991) Acidification research in Finland. Review of the results of the fin-fish acidification research programme (HAPRO) 1985–1990. Brochure 39: 48 S., Ministry of the Environment, Helsinki

    Google Scholar 

  • de Baar HJW, Saager PM, Nolting RF, van der Meer J (1994) Cadmium versus phosphate in the world ocean. Mar Chem 46: 261–281

    Article  Google Scholar 

  • Balistrieri LS. Murray JW, Paul B (1994) The geochemical cycling of trace elements in a biogenic meromictic Take. Geochim Cosmochim Acta 58: 3993–4008

    Article  CAS  Google Scholar 

  • Balzer W (1982) On the distribution of iron and manganese at the sediment/water interface: Thermodynamic versus kinetic control. Geochim Cosmochim Acta 46: 1153–1161

    Article  CAS  Google Scholar 

  • Bartnicki J. Modzelewski H, Pacyna J M, Olendrzynski K (1995) Atmospheric transport and deposition of heavy metals within Europe.Comparison of model results and observations. In: Wilken RD, Förstner U, Knöchel A (eds) Int Conf Heavy metals in the environment 1: 208–211,Hamburg

    Google Scholar 

  • Bergström S, Carlsson B (1993) Hydrology of the Baltic Basin. Inflow of freshwater from rivers and land for the period 1950–1990. SMHI Reports Hydrology 7: 21 S., Norrköping, April 1993

    Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23,4–5: 280–287

    Google Scholar 

  • Beyer K (1994) The North Sea and the Baltic Sea: An environmental comparison. In: Platzöder R. Verlaan P (eds) The Baltic Sea: New developments in national policies and international cooperation 2: 360–362. Stiftung Wissenschaft und Politik, Ebenhausen

    Google Scholar 

  • Bignert A (1996) Comments concerning the Swedish monitoring programme in marine biota. Sakrapport (Avtal nr 223 402), Stockholm, 26.01.1996

    Google Scholar 

  • Bolalek J (1982) The model for air-sea exchange of particulate heavy metals and its verification for the southern Baltic. Proc. 13th Conf Baltic Oceanogr, Helsinki, S. 169–181

    Google Scholar 

  • Borbély-Kiss I, Koltay E, Szabo G, Bozo L, Meszaros E, Molnar A (1991) Elemental composition of aerosol particles under background conditions in Hungary. Atmos Environ 25A: 661–668

    Google Scholar 

  • Borg H, Jonsson P (1996) Large-scale metal distribution in Baltic Sea sediments. Mar Pollut Bull 32, 1: 8–21

    Article  CAS  Google Scholar 

  • Boström K, Burman J-O, Ingri J (1983) A geochemical mass balance for the Baltic. In: Hallberg R (ed) Environmental Biogeochemistry. Ecol Bull 35: 39–58 Stockholm

    Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96: 225–250

    Article  CAS  Google Scholar 

  • Brogmus W (1952) Eine Revision des Wasserhaushaltes der Ostsee. Kieler Meeresforsch 9: 15–42

    CAS  Google Scholar 

  • Brügmann L (1986a) The influence of coastal zone processes on mass balances for trace metals in the Baltic Sea. Rapp. P-v Réun Cons Int Explor Mer 186: 329–342

    Google Scholar 

  • Brügmann L (1986b) Particulate trace metals in waters of the Baltic Sea and parts of the adjacent NE Atlantic. Beitr Meeresk. 55: 3–18

    Google Scholar 

  • Brügmann L, Gaul H, Rohde K-H, Ziebarth U (1991/92) Regional distribution and temporal trends of some contaminants in the water of the Baltic Sea. Dt Hydrogr Z 44: 161–184

    Article  Google Scholar 

  • Brügmann L (1992) Research and monitoring of contaminants in the Baltic Sea — two sides of one coin?! ICES C.M. E44: 18 S.

    Google Scholar 

  • Brügmann L, Bernard PC, van Grieken R (1992) Geochemistry of suspended matter from the Baltic Sea. 2. Results of bulk trace metal analysis by AAS. Mar Chem 38: 303–3232

    Article  Google Scholar 

  • Brügmann L, Lange D (1990) Metal distribution in sediments of the Baltic Sea. Limnologica 20: 15–28; Berlin

    Google Scholar 

  • Brügmann L, Hennings U (1994) Metals in zooplankton from the Baltic Sea, 1980–84. Chem Ecol 9: 87–103

    Article  Google Scholar 

  • Brügmann L, Hennings U (eingereicht, 1996) Trace metals in the Baltic Sea atmosphere, 1980–91. Atmos Environ

    Google Scholar 

  • Brügmann L, Hallberg R, Larsson C, Löffler A (1997) Changing redox conditions in the Baltic Sea deep basins: Impacts on the concentration and speciation of trace metals. Ambio, akzeptiert

    Google Scholar 

  • Bruland KW (1983) Trace elements in sea-water. In: Chemical oceanography 8: 157–220; Academic Press, London

    Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36: 1555–1577

    Article  CAS  Google Scholar 

  • Bruneau L (1980) Pollution from industries in the drainage area of the Baltic. Ambio 9, 3–4: 145–152

    Google Scholar 

  • Cambray RS, Jefferies DF, Topping G (1975) An estimate of the input of atmospheric trace elements into the North Sea and the Clyde Sea. AERE-Report RM 7733

    Google Scholar 

  • Cambray RS, Jefferies DF, Topping G (1979) The atmospheric input of trace elements to the North Sea. Mar Sci Communie 5: 175–194

    CAS  Google Scholar 

  • Cato I (1986) Sedimentens belastning av tungmetaller och närsalter i Göteborgs skärgård 1982 samt förändringar efter 1966. Göteborgs Maringeol Inst, Report 2: 95 S.

    Google Scholar 

  • Chester R (1990) Marine geochemistry. Unwin Hyman, 698 S.

    Book  Google Scholar 

  • Chester R, Murphy KJT, Lin FJ, Berry AS, Bradshaw GA, Corcoran PA (1993) Factors controlling the solubilities of trace metals from non-remote aerosols deposited to the sea surface by the „dry“ deposition mode. Mar Chem 42: 107–126

    Article  CAS  Google Scholar 

  • Church TM (1996) An underground route for the water cycle. Nature 380: 579–580

    Article  CAS  Google Scholar 

  • Comber SDW, Gunn AM, Whalley C (1995) Comparison of the partitioning of trace metals in the Humber and Mersey Estuaries. Mar Poll Bull 30: 851–860

    Article  CAS  Google Scholar 

  • Cullen JJ (1995) Status of the iron hypothesis after the open-ocean enrichment experiment. Limnol Oceanogr 40: 1336–1343

    Article  CAS  Google Scholar 

  • Cushing DH, Humphrey GE. Banse K, Laevastu T (1958) Report of the Committee on Terms and Equivalents. Rapp P-v Réun Cons Int Explor Mer 183: 15–16

    Google Scholar 

  • Dahlström B (1977) Estimation of precipitation for the Baltic Sea — preliminary results. Ad hoc meeting of the Pilot Study Group of Experts. Norrköping

    Google Scholar 

  • Danisiewicz D, Hákansson K, Tonderski A, Allard B (1994) Seasonal variations of metal transport in the Vistula river. Abstract Poster presentation. In: Helios Rybicka E, Sikora WS (eds) 3rd Int Symp Environ Geochem, Krakow, Poland, 12: 15. September 1994, S. 92

    Google Scholar 

  • Davidan IN, Savchuk OP (Hrsg; 1989) Basic tendencies of the evolution of an ecosystem. Ser. No. 4: Problems to investigate and model the Baltic Sea ecosystem. International Project „Baltika“. Gidrometeoisdat, Leningrad, S. 150–190 (auf russisch)

    Google Scholar 

  • Defant F (1974) Klima und Wetter. In: Magaard L, Rheinheimer G (Hrsg) Meereskunde der Ostsee. Springer, Berlin Heidelberg, S. 19–32

    Chapter  Google Scholar 

  • DHI (1986) Überwachung des Meeres. Bericht für das Jahr 1984,Teil It: Daten. Deutsches Hydrographisches Institut, Hamburg

    Google Scholar 

  • DHI (1987) Uberwachung des Meeres. Bericht für das Jahr 1985,Teil II: Daten. Deutsches Hydrographisches Institut, Hamburg

    Google Scholar 

  • Dyrssen D (1993) The Baltic-Kattegat-Skagerak estuarine system.Estuaries 16: 446–452

    Article  Google Scholar 

  • Edén P, Björklund A (1993) Hydrogeochemistry of river waters in Fennoscandia. Aqua Fennica 23: 125–142

    Google Scholar 

  • Ehlers P (1993) Protection of the Baltic Sea. HANSA, Schiffahrt, Schiffbau & Hafen 130: 6–10

    Google Scholar 

  • Ehlin U (1981) Hydrology of the Baltic sea. In: Voipio A (ed) The Baltic sea. Elsevier Oceanography Series 30: 123–134

    Chapter  Google Scholar 

  • Ehlin U, Mattisson I (1976) Volymer och areor i Ostersjöomradet.Vannet i Norden 9: 6–20

    Google Scholar 

  • Fonselius S (l969) Hydrography of the Baltic Deep Basins III. Fish Board Swed Ser Hydrogr Rep 23: 97 S.

    Google Scholar 

  • Fonselius SH, Szaron J, Ostrom B (1984) Long-term salinity variations in the Baltic Sea deep water. Rapp P-v Cons lnt Explor Mer 185: 140–149

    Google Scholar 

  • Fonselius SH (1985) Water renewal in a semi-stagnant sea studiedby means of chemical parameters. Rit Fiskideildar 9: 152–162

    Google Scholar 

  • Fonselius SH (1995) Long time trends of salinity and oxygen inthe Baltic Sea. World of the Baltic Sea 2: 71–72

    Google Scholar 

  • Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, 486 S.

    Book  Google Scholar 

  • Forsberg C (1993) The Baltic Sea Environment. Session 3 Eutrophication of the Baltic Sea. The Baltic University Secretariat, Uppsala, 32 S.

    Google Scholar 

  • Franck H, Matthäus W, Sammler R (1987) Major inflows of saline water into the Baltic Sea during the present century. Ger-lands Beitr Geophysik 96: 517–531, Leipzig

    Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L. Zenk ML (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150: 197–202

    Article  CAS  Google Scholar 

  • Gerlach SA (1994) Oxygen conditions improve when the salinity in the Baltic Sea decreases. Mar Poll Bull 28: 413–416

    Article  CAS  Google Scholar 

  • GESAMP (1980) Interchange of pollutants between the atmosphere and the oceans. GESAMP Reports and Studies 13: 55 S.

    Google Scholar 

  • GESAMP (1985) Interchange of pollutants between the atmosphere and the oceans (Part II). GESAMP Reports and Studies 23: 55 S.

    Google Scholar 

  • GESAMP (1989) The atmospheric input of trace species to the world ocean. GESAMP Reports and Studies 38: 39 S.

    Google Scholar 

  • GESAMP (1991) Global changes and the air-sea exchange of chemicals. GESAMP Reports and Studies 48: 69 S.

    Google Scholar 

  • González-Dávila M (1995) The role of phytoplankton cells on the control of heavy metal concentration in seawater. Mar Chem 48: 215–236

    Article  Google Scholar 

  • Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr. Mar Biol Annul Rev 30: 149–190

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk ML (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84: 439–443

    Article  CAS  Google Scholar 

  • Grill E, Löffler.S, Winnacker E-L. Zenk ML (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86: 6838–6842

    Article  CAS  Google Scholar 

  • Grimås U, Suárez JM (1989) Metaller efter Ostersjökusten - Vatten, organismer, sediment. Naturvárdsverket Rapport 3580: 79 S.

    Google Scholar 

  • Haarich M, Schmidt D (1993a) Schwermetalle in der Nordsee: Ergebnisse der ZISCH-Großaufnahme vom 2.5. his 13.6.1986. Dt Hydrogr Z 45: 137–201

    Article  Google Scholar 

  • Haarich M, Schmidt D (1993b) Schwermetalle in der Nordsee (2) Ergebnisse der ZISCH-Großaufnahme vom 28.1.-6.3.1987. Dt Hydrogr Z 45: 371–431

    Article  Google Scholar 

  • Hallberg RO (1979) Heavy metals in the sediments of the Gulf of Bothnia. Ambio 8: 265–269

    CAS  Google Scholar 

  • Hallberg RO (1982) Diagenetic and environmental effects upon heavy metal distribution in sediments - A hypothesis, with an illustration from the Baltic Sea. In: Manheim FT, Fanning KA (eds) The dynamic environment of the ocean floor. DC Heath and Co. S. 305–316

    Google Scholar 

  • Hallberg RO (1991) Environmental implications of metal distribu-tion in Baltic Sea sediments. Ambio 20: 309–316

    Google Scholar 

  • Hallberg RO (1992) Sediments — their interaction with biogeochemical cycles through formation and diagenesis. In: Butcher S, Charlson R (eds) Global biogeochemical cycles. Academic Press, S. 155–174

    Chapter  Google Scholar 

  • Heinrichs H (1975) Die Untersuchung von Gesteinen und Gewässum auf Cd, Sb, Hg, Tl, Pb und Bi mit der tlammenlosen Atom-Absorbtions-Spektralphotometrie. Unveröff. Dissertation, Geowiss Univ Göttingen, 97 S.

    Google Scholar 

  • HELCOM (1986) Water balance of the Baltic Sea. Baltic Sea Environ Proc 16: 174 S.

    Google Scholar 

  • HELCOM (1987) First Baltic Sea Pollution Load Compilation. Baltic Sea Environ Proc 20: 56 S., Hamburg Helsinki

    Google Scholar 

  • HELCOM (1989) Deposition of airborne pollutants to the Baltic Sea area 1983–1985 and 1986. Baltic Sea Environ Proc 32: 62 S., Helsinki

    Google Scholar 

  • HELCOM (1990) Second Periodic Assessment of the State of the Marine Environment of the Baltic Sea, 1984–1988; Background document. Baltic Sea Environ Proc 35B: 428 S., Hamburg

    Google Scholar 

  • HELCOM (1991) Airborne pollution load to the Baltic Sea 1986–1990. Baltic Sea Environ Proc 39: 162 S., Helsinki

    Google Scholar 

  • HELCOM (1993a) Second Baltic Sea Pollution Load Compilation. Baltic Sea Environ Proc 45: 161 S.. Hamburg Helsinki

    Google Scholar 

  • HELCOM (1993b) First assessment of the state of the coastal waters of the Baltic Sea. Baltic Sea Environ Proc 54: 160 S., Helsinki

    Google Scholar 

  • HELCOM (1994a) Guidelines for the Third Pollution Load Compilation (PLC-3). Baltic Sea Environ Proc 57: 44 S., Tallinn

    Google Scholar 

  • HELCOM (1994b) The environmental condition of the Baltic Sea. HELCOM News 5:15 S., November 1994

    Google Scholar 

  • Håkanson L (1993) The Baltic Sea Environment. Session I Physical Geography of the Baltic Sea. The Baltic University Secretariat, Uppsala, 35 S.

    Google Scholar 

  • Håkansson BG, Broman B, Dahlin H (1993) The flow of water and salt in the Sound during the Baltic major inflow event in January 1993. ICES C M 1993, C57: 9 S.

    Google Scholar 

  • Injuk J, Van Grieken R (1995) Atmospheric concentrations and deposition of heavy metals over the North Sea: a literature review. J Atmos Chem 20: I79–212

    Article  Google Scholar 

  • Iverfeldt A (1991) Atmospheric mercury over the Nordic countries. Water Air Soil Pollut 55: 33–47

    Google Scholar 

  • Jonsson P (1992) Large-scale changes of contaminants in Baltic Sea sediments during the twentieth century. Unveröff Dissertation. Uppsala University, 227 S.

    Google Scholar 

  • Jonsson P, Carman R, Wulff F (1990) Laminated sediments in the Baltic — a tool for evaluating nutrient mass balances. Ambio 19: 152–158

    Google Scholar 

  • Kempe S, Pettine M, Cauwet G (1991) Biogeochemistry of european rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. SCOPE 42: 169–211, Wiley & Sons

    Google Scholar 

  • Kolber ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM, Johnson KS, Lindley S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371: 145–149

    Article  CAS  Google Scholar 

  • Kremling K (1983) The behavior of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic Baltic waters. Mar Chem 13: 87–108

    Article  CAS  Google Scholar 

  • Kremling K, Tokos JJS, Brügmann L, Hansen H-P (eingereicht, 1996) Variability of dissolved and particulate trace metals in the Kiel and Mecklenburg Bights of the Baltic Sea, 19901992. Mar Poll Bull

    Google Scholar 

  • Kriews M, Bergmann J, Naumann K, Dannecker W (1992) A long term study and source characterisation of atmospheric contaminants in the German Bight. ICES C M E24: 9 S.

    Google Scholar 

  • Lapp B, Balzer W (1993) Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments. Geochim Cosmochim Acta 57: 4639–4652

    Article  CAS  Google Scholar 

  • Larsson U. Elmgren R, Wulff F (1985) Eutrophication and the Baltic Sea: causes and consequences. Arabio 14: 9–14

    CAS  Google Scholar 

  • Lee JG, Roberts SB, Morel FMM (1995) Cadmium: A nutrient for the marine diatom Thalassiosira weissfogii. Limnol Oceanogr 40: 1056–1063

    Article  CAS  Google Scholar 

  • Leipe T, Neumann T, Emeis K-C (1995) Schwermetallverteilung in holozänen Ostseesedimenten - Untersuchungen im Einflußbereich der Oder. Geowissenschaften 13: 470–478

    Google Scholar 

  • Lithner G, Borg H, Grimás U, Göthberg A, Neumann G, Wrádhe H (1990) Estimating the load of metals to the Baltic Sea. Ambio Spec Rep 7: 7–9

    Google Scholar 

  • Löfvendahl R (1990) Changes in the flux of some major dissolved components in Swedish rivers during the present century. Arabio 19,4: 210–219

    Google Scholar 

  • Magaard L, Rheinheimer G (Hrsg 1974) Meereskunde der Ostsee, Springer Verlag Berlin Heidelberg, 269 S.

    Book  Google Scholar 

  • Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter C. et al. (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123–129

    Article  CAS  Google Scholar 

  • Matschullat J (1997) Trace element fluxes to the Baltic Sea: problems of atmospheric and fluvial input budgets (Ambio, akzeptiert)

    Google Scholar 

  • Matschullat J, Bozau E (1996) Atmospheric element input in the eastern Ore Mountains. Applied Geochem 11,1–2: 149–154

    Article  CAS  Google Scholar 

  • Matschullat J, Kritzer P, Maenhaut W (1995) Geochemical fluxes in forested acidified catchments. Water Air Soil Pollut 85,2: 859–864

    Article  CAS  Google Scholar 

  • Matschullat J, Müller G, Naumann U, Schilling H (1997) Zur Sedimentbelastung und Elementfracht der Schwarzen Elster, einem Nebenfluß der Elbe. Z Angew Geol (im Druck)

    Google Scholar 

  • Matthäus W, Lass H-U (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25: 280–286

    Article  Google Scholar 

  • Mee L (1992) The Black Sea in crisis: A need for concerted international action. Ambio 21: 278–286

    Google Scholar 

  • Mikulski Z (1970) Inflow of river water to the Baltic Sea in the period 1951–1960. Nordic Hydrol 4: 216–227

    Google Scholar 

  • Moffett JW, Zika RG, Brand LE (1990) Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Res 37: 27–36

    Article  CAS  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 2 “Ra enrichments. Nature 380: 612–614

    Article  CAS  Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369: 740–742

    Article  CAS  Google Scholar 

  • Müller G, Dominik J, Reuther R, Malisch R, Schulte E, Acker L, Irion G (1980) Sedimentary record of environmental pollution in the Western Baltic Sea. Naturwissenschaften 67: 595–600

    Article  Google Scholar 

  • Naumann U (1997) Unveröff. Dissertation, TU Dresden

    Google Scholar 

  • Neumann T, Christiansen C, Clasen S, Emeis K-C, Kunzendorf H (1997) Geochemical records of salt-water inflow into the deep basins of the Baltic Sea. Cont Shelf Res (Appt Geochem, im Druck)

    Google Scholar 

  • Olendrzynski K, Anderberg S, Bartnicki J, Pacyna JM, Stigliani W (1995) Atmospheric emissions and depositions of cadmium, lead and zinc in Europe during the period 1955–1987. IIASA Working paper 95,35: 31 S., Laxenburg, Austria

    Google Scholar 

  • Osterroht C, Kremling K, Wenck A (1988) Small-scale variations of dissolved organic copper in Baltic waters. Mar Chem 23: 153–165

    Article  CAS  Google Scholar 

  • Pacyna JM (1984) Estimation of the atmospheric emissions of trace elements from anthropogenic sources in Europe. Atmospheric Environ 18, 1: 41–50

    Article  CAS  Google Scholar 

  • Pacyna JM (1992) The Baltic sea environmental programme. The topical area study for atmospheric deposition of pollutants. Final technical report and final synthesis report. NILU reports 46: 141 S. und 47:41 S.

    Google Scholar 

  • Pacyna JM (1993) Atmospheric deposition of heavy metals to the Baltic sea. In: Allen RJ, Nriagu, JO (eds) Int Conf Heavy Metals in the Environment, Toronto I: 93–96

    Google Scholar 

  • Pawlak J (1980) Land-based inputs of some major pollutants to the Baltic sea. Ambio 9,3–4: 163–167

    Google Scholar 

  • Petersen G, Krüger O (1993) Untersuchung und Bewertung des Schadstoffeintrags über die Atmosphäre im Rahmen von PARCOM (Nordsee) und HELCOM (Ostsee) - Teilvorhaben: Modellierung des großräumigen Transports von Spurenmetallen. GKSS Report 93/E/28: 1 l l S., Geesthacht

    Google Scholar 

  • Petersen G, Weber H, Grassl H (1989) Modelling the atmospheric transport of trace metals from Europe to the North Sea and the Baltic Sea. In: Pacyna JM, Ottar B (eds) Control and fate of atmospheric trace metals. NATO ASI Series. Series C: Mathematical and physical Sciences 268: 57–83, Kluwer Academic Publishers

    Chapter  Google Scholar 

  • Pheiffer Madsen P, Larsen B (1986) Accumulation of mud sediments and trace metals in the Kattegat and the Belt Sea. Report of the Marine Pollution Laboratory, 10 S.

    Google Scholar 

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344: 658–660

    Article  CAS  Google Scholar 

  • Pustelnikov OS (1976) Absolutwerte der Masse an Sedimentmaterial und das Tempo rezenter Sedimentation in die Ostsee. Beitr Meereskunde 38: 81–93

    Google Scholar 

  • Pustelnikov OS (1977) Geochemical features of suspended matter in connection with recent sedimentation processes in the Baltic sea. Ambio Special Report 5: 157–162

    CAS  Google Scholar 

  • Ranke W (1994) Recent developments with respect to the International Baltic Sea Fishery Commission. In: Platzöder R, Verlaan P (eds) The Baltic Sea: New developments in national policies and international cooperation 2:250–255; Stiftung Wissenschaft und Politik, Ebenhausen

    Google Scholar 

  • Rechlin O (1991) Zustand der Fischbestände in der Ostsee. Arbeiten des Deutschen Fischerei-Verbandes e.V. 54: 63–77, Hamburg

    Google Scholar 

  • Reimann C, de Caritat P, Ayräs M, Chekushin VA, Halleraker JH, Jæger O, Niskavaara H, Pavlov V, Volden T (1995) Heavy metal and sulphur content in snowpack and rainwater samples from eight catchments north of the Arctic circle in Finland, Norway and Russia. In: Wilken Rd, Förstner U, Knöchel A (eds) Int Conf Heavy metals in the environment 1: 160–163, Hamburg

    Google Scholar 

  • Rodhe H, Söderlund R, Ekstedt J (1980) Deposition of airborne pollutants on the Baltic. Ambio 9, 3–4: 168–173

    CAS  Google Scholar 

  • Ross HB (1987) Trace metals in precipitation in Sweden. Water Air Soil Pollut 36: 349–363

    Article  CAS  Google Scholar 

  • Ruchay D (1991) Elbe — Anforderungen, Konzepte und Maßnahmen. Wasser Boden 43: 674–675

    Google Scholar 

  • Rühling A, Rasmussen L, Pilegaard K, Mäkinen A, Steinnes E (1987) Survey of atmospheric heavy metal deposition in the Nordic countries in 1985. Nord 1987, 21: 44 S.

    Google Scholar 

  • Rühling A (ed; 1994) Atmospheric heavy metal deposition in Europe - estimation based on moss analysis. Nord 1994,9: 53 S., Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Sabela R (1994) Der Bergbau auf mineralische Rohstoffe in Polen. Glückauf 130, 12: 797–802

    Google Scholar 

  • Sandén P, Rahm L (1993) Nutrient trends in the Baltic Sea. Environmetrics 4, 1: 75–103

    Article  Google Scholar 

  • Sandén P, Danielsson A (1995) Spatial properties of nutrient concentrations in the Baltic Sea. Environ Monitor Assessment 34: 289–307

    Article  Google Scholar 

  • Schleyer R, Kerndorff H (1992) Die Grundwasserqualität westdeutscher Trinkwasserresourcen. VCH Verlagsgesellschaft Weinheim, 249 S.

    Google Scholar 

  • Schneider B (1987) Source characterization for atmospheric trace metals over Kiel Bight. Atmos Environ 21: 1275–1283

    CAS  Google Scholar 

  • Schulz S (1994) Is the possible absence of major saltwater inflows becoming a disaster for the Baltic ecosystem? 19th Conf of the Baltic Oceanographers, Sopot

    Google Scholar 

  • Siewers U, Roostai AH (1990) Verbundforschung Fallstudie Harz: Schadstoffbelastung, Reaktion der Okosphäre und Wasserqualität. Teilvorhaben 2: Schwermetallbilanz aus Immission und geogenem Anteil im Einzugsgebiet der Sösetalsperre/ Harz. In: Ber Forschungszentr Waldökosysteme B19: 57 S.

    Google Scholar 

  • SNV (1988) Monitor 1988; Sweden’s marine environment - ecosystems under pressure. National Swedish Environmental Protection Board. Helsingborg, 207 S.

    Google Scholar 

  • Söderlund R (1987) Deposition estimates to the Baltic Sea area based on reported data for 1984/85. 4th Meeting of the HELCOM-EGAP Group, Helsinki, 27–30 April 1987

    Google Scholar 

  • Somer E (1977) H y metals in the Baltic. ICES C M E9: 3 S.

    Google Scholar 

  • Sternbeck J, Sohlenius eav G (1996) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chem Geol (submitted)

    Google Scholar 

  • Stordal MC, Gill GA, Wen LS, Santschi PH (1996) Mercury phase speciation in the surface waters of three Texas estuaries: Importance of colloidal forms. Limnol Oceanogr 41: 52–61

    Article  CAS  Google Scholar 

  • Stössel R-P (1987) Untersuchungen zur nassen und trockenen Deposition von Schwermetallen auf der Insel Pellworm. GKSS Report 87/E/34, Geesthacht

    Google Scholar 

  • Szefer P (1990) Mass-balance of metals and identification of their sources in both river and fallout fluxes near Gdansk Bay, Baltic Sea. Sci Tot Environ 95: 131–139

    Article  CAS  Google Scholar 

  • UBA (Umweltbundesamt) (Hrsg; 1994) Daten zur Umwelt 1992/93. Erich Schmidt Verlag, 688 S.

    Google Scholar 

  • UBA (Umweltbundesamt) (Hrsg; 1995) Jahresbericht 1994, Berlin 420 S.

    Google Scholar 

  • Walkusz J, Roman S, Pempkowiak J (1992) Contamination of the southern Baltic surface sediments with heavy metals. Bull Sea Fish Inst 125: 33–37

    Google Scholar 

  • Wallace G, Duce R (1978) Open-ocean transport of particulatetrace metals by bubbles. Deep-Sea Res 25: 827–835

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust.Geochim Cosmochim Acta 59,7: 1217–1232

    Article  CAS  Google Scholar 

  • Wik M, Renberg I (1991) Recent atmospheric deposition in Sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments. Ambio 20,7: 289–292

    Google Scholar 

  • Winterhalter B, Flodén T, Ignatius H, Axberg S, Niemisto L (1981) Geology of the Baltic Sea. In Voipio A (Hrsg) The Baltic Sea, Elsevier Oceanography Series 30: 1–121

    Chapter  Google Scholar 

  • Wrembel HZ (1983) An estimation of the mercury content in the waters of the Pomeranian Baltic-shore-area. Acta hydrochinl hydrobiol 11: 523–538

    Article  CAS  Google Scholar 

  • Xue XanBin, Sigg L (1993) Free cupric ion concentration and Cu(11) speciation in a eutrophie lake. Limnol Oceanogr 38: 1200–1213

    Article  Google Scholar 

  • Xue XanBin, Kistler D, Sigg L (1995) Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol Oceanogr 40: 1142–1152

    Article  Google Scholar 

  • Zhang J, Yan J, Zhang ZF (1995) Nationwide river chemistry trends in China: Huanghe and Changjiang. Ambio 24, 5: 275–279

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brügmann, L., Matschullat, J. (1997). Zur Biogeochemie und Bilanzierung von Schwermetallen in der Ostsee. In: Geochemie und Umwelt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59038-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59038-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63826-8

  • Online ISBN: 978-3-642-59038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics