Skip to main content

Melatonin and Immune Functions

  • Chapter
The Pineal Gland and Cancer

Abstract

Evidence has accumulated suggesting that melatonin, the major endocrine product of the pineal gland - as a well-preserved molecule through evolution - is involved in the feedback between neuroendocrine and immune functions. At present, we are beginning to understand the mechanisms of action by which melatonin affects cellular functions. In this article, we present a critical review of the numerous reports on the influence of melatonin on immune functions, focussing especially on possible underlying molecular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton-Tay F, Huerto-Delgadillo L, Ortega-Corona B, Benitez-King G (1993) Melatonin antagonism to calmodulin may modulate multiple cellular functions. In: Touitou Y, Arendt J, Pevet P (eds) Melatonin and the pineal gland: From science to clinical applications. Elsevier, Amsterdam, pp 41–46.

    Google Scholar 

  • Arzt ES, Fernandez-Castelo S, Finocchiaro LM, Criscuolo ME, Diaz A, Finkielman S, Nahmod VE (1988) Immunomodulation by indoleamines: serotonin and melatonin action on DNA and interferon-gamma synthesis by human peripheral blood mononuclear cells. J Clin Immunol 8:513–520.

    PubMed  CAS  Google Scholar 

  • Axelrod J (1974) The pineal gland: a neurochemical transducer. Science 184:1341–1348.

    PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-KB in the immune system. Annu Rev Immunol 12:141–179.

    PubMed  CAS  Google Scholar 

  • Barjavel MJ, Mamdouh Z, Raghbate N, Bakouche O (1998) Differential expression of the melatonin receptor in human monocytes. J Immunol 160:1191–1197.

    PubMed  CAS  Google Scholar 

  • Barsacchi R, Kusmic C, Damiani E, Carloni P, Greci L, Donato L (1998) Vitamin E consumption induced by oxidative stress in red blood cells is enhanced by melatonin and reduced by N-acetyl- serotonin. Free Radical Biol Med 24:1187–1192.

    CAS  Google Scholar 

  • Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534.

    PubMed  CAS  Google Scholar 

  • Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1997) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 272:16707.

    CAS  Google Scholar 

  • Benitez-King G, Antón-Tay F (1993) Calmodulin mediates melatonin cytoskeletal effects. Experientia 49:635–641.

    PubMed  CAS  Google Scholar 

  • Benitez-King G, Huerto-Delgadillo L, Anton-Tay F (1991) Melatonin modifies calmodulin cell levels in MDCK and N1E–115 cell lines and inhibits phosphodiesterase activity in vitro. Brain Res 557:289–292.

    PubMed  CAS  Google Scholar 

  • Benitez-King G, Huerto-Delgadillo L, Antón-Tay F (1993) Binding of 3H-melatonin to calmodulin Life Sci 53:201–207.

    PubMed  CAS  Google Scholar 

  • Benitez-King G, Rios A, Martinez A, Anton-Tay F (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochem Biophys Acta 1290:191–196.

    PubMed  Google Scholar 

  • Ben-Nathan D, Maestroni GJ, Lustig S, Conti A (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch Virol 140:223–230.

    PubMed  CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10.

    PubMed  CAS  Google Scholar 

  • Calvo JR, Rafìi-el-Idrissi M, Pozo D, Guerrero JM (1995) Immunomodulatory role of melatonin: specific binding sites in human and rodent lymphoid cells. J Pineal Res 18:119–126.

    PubMed  CAS  Google Scholar 

  • Caroleo MC, Doria G, Nistico G (1994) Melatonin restores immunodepression in aged and cyclophosphamide-treated mice. Ann N Y Acad Sci 719:343–352.

    PubMed  CAS  Google Scholar 

  • Caroleo MC, Frasca D, Nistico G, Doria G (1992) Melatonin as immunomodulator in immunodeficient mice. Immunopharmacology 23:81–89.

    PubMed  CAS  Google Scholar 

  • Champney TH, Prado J, Youngblood T, Appel K, McMurray DN (1997) Immune responsiveness of splenocytes after chronic daily melatonin administration in male Syrien hamsters. Immunol Lett 58:95–100.

    PubMed  CAS  Google Scholar 

  • Champney TH, Allen GC, Zannelli M, Beausang LA (1998) Time-dependent effects of melatonin on immune measurements in male Syrian hamsters. J Pineal Res 25:142–146.

    PubMed  CAS  Google Scholar 

  • Chen H, Centola M, Altschul SF, Metzger H (1998) Characterisation of gene expression in resting and activated mast cells. J Exp Med 188:1657–1668.

    PubMed  CAS  Google Scholar 

  • Csaba G, Barath P (1975) Morphological changes of thymus and the thyroid gland after postnatal extirpation of pineal body. Endocrinol Exp 9:59–67.

    PubMed  CAS  Google Scholar 

  • Csaba G, Bodoky M, Toro I (1965) Hormonal relationships of mastocytogenesis in lymphatic organs. II. Effect of epiphysectomy on the genesis of mast cells. Acta Anat Basel 61:289–296.

    CAS  Google Scholar 

  • Csaba G, Dunay C, Fischer J, Bodoky M (1968) Hormonal relationships of mastocytogenesis in lymphatic organs. 3. Effect of the pineal body-thyroid-thymus system on mast cell production. Acta Anat Basel 71:565–580.

    PubMed  CAS  Google Scholar 

  • Demas GE, Nelson RJ (1998) Exogenous melatonin enhances cell-mediated, but not humoral, immune function in adult male deer mice (Peromyscus maniculatus). J Biol Rhythms 13:245–252.

    PubMed  CAS  Google Scholar 

  • DiStefano A, Paulesu L (1994) Inhibitory effect of melatonin on production of IFN gamma or TNF alpha in peripheral blood mononuclear cells of some blood donors. J Pineal Res 17:164–169.

    CAS  Google Scholar 

  • Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA 91:6133–6137.

    PubMed  CAS  Google Scholar 

  • Felsner P, Hofer D, Rinner I, Mangge H, Gruber M, Korsatko W, Schauenstein K (1992) Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of rat peripheral blood T-lymphocytes via α-mediated mechanisms. J Neuroimmunol 37:47–57.

    PubMed  CAS  Google Scholar 

  • Felsner P, Hofer D, Rinner I, Porta S, Korsatko W, Schauenstein K (1995) Adrenergic suppression of peripheral blood T cell reactivity in the rat is due to activation of peripheral α2-receptors. J Neuroimmunol 57:27–34.

    PubMed  CAS  Google Scholar 

  • Finocchiaro LME, Arzt ES, Fernandez-Castelo S, Criscuolo M, Finkielman S, Nahmod VE (1988) Serotonin and melatonin synthesis in peripheral blood mononuclear cells: stimulation by interferon-γ as part of an immunomodulatory pathway. J Interferon Res 8:705–716.

    PubMed  CAS  Google Scholar 

  • Finocchiaro LM, Nahmod VE, Launay JM (1991) Melatonin biosynthesis and metabolism in peripheral blood mononuclear leucocytes. Biochem J 280:727–731.

    PubMed  CAS  Google Scholar 

  • Finocchiaro LM, Polack E, Nahmod VE, Glikin GC (1995) Sensitivity of human peripheral blood mononuclear leukocytes to visible light. Life Sci 57:1097–1110.

    PubMed  CAS  Google Scholar 

  • Flescher E, Ledbetter JA, Schieven GL, Vela-Roch N, Fossum D, Dang H, Ogawa N, Talal N (1994) Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J Immunol 153:4880–4889.

    PubMed  CAS  Google Scholar 

  • Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Rafìi-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM (1997) Melatonin enhances IL-2, IL-6, and IFN-γ production by human circulating CD4+ cells. J Immunol 159:574–581.

    PubMed  Google Scholar 

  • Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Goberna R, Guerrero JM (1998) Involvement of nuclear binding sites for melatonin in the regulation of IL-2 and IL-6 production by human blood mononuclear cells. J Neuroimmunol 92:76–84.

    PubMed  Google Scholar 

  • Garcia-Perganeda A, Pozo D, Guerrero JM, Calvo JR (1997) Signal transduction for melatonin in human lymphocytes: involvement of a pertussis toxin-sensitive G protein. J Immunol 159: 3774–3781.

    PubMed  CAS  Google Scholar 

  • Gilad E, Wong HR, Zingarelli B, Virág L, O’Connor M, Salzman AL, Szabo C (1998) Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFKB activation. FASEB J 12:685–693.

    PubMed  CAS  Google Scholar 

  • Ginn-Pease ME, Whisler RL (1998) Redox signals and NF-KB activation in T cells. Free Radic Biol Med 25:346–361.

    PubMed  CAS  Google Scholar 

  • Giordano M, Palermo MS (1991) Melatonin-induced enhancement of antibody-dependent cellular cytotoxicity. J Pineal Res 10:117–121.

    PubMed  CAS  Google Scholar 

  • Giordano M, Vermeulen M, Palermo MS (1993) Seasonal variations in antibody-dependent cellular cytotoxicity regulation by melatonin. FASEB J 7:1052–1054.

    PubMed  CAS  Google Scholar 

  • Giusti P, Lipartiti M, Franceschini D, Schiavo N, Floreani M, Manev H (1996) Neuroprotection by melatonin from kianate-induced excitotoxicity in rats. FASEB J 10:891–896.

    PubMed  CAS  Google Scholar 

  • Goldstone SD, Fragonas JC, Jeitner TM, Hunt NH (1995) Transcription factors as targets for oxidative signalling during lymphocyte activation. Biochim Biophys Acta 1263:114–122.

    PubMed  Google Scholar 

  • Gonzalez-Haba MG, Garcia-Maurino S, Calvo JR, Goberna R, Guerrero JM (1995) High-affinity binding of melatonin by human circulating T lymphocytes (CD4+). FASEB J 9:1331–1335.

    PubMed  CAS  Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357.

    PubMed  CAS  Google Scholar 

  • Hazlerigg DG, Barrett P Hastings MH, Morgan PJ (1996) Are nuclear receptors involved in pituitary responsiveness to melatonin? Mol Cell Endocrinol 123:53–59.

    PubMed  CAS  Google Scholar 

  • Huerto-Delgadillo L, Anton-Tay F, Benitez-King G (1994) Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist. J Pineal Res 17:55–62.

    PubMed  CAS  Google Scholar 

  • Jankovic D, Isakovic K, Petrovic S. (1970) Effect of pinealectomy on immune reactions in the rat. Immunology 18:1–6.

    PubMed  CAS  Google Scholar 

  • Jenkins MK, Miller RA (1992) Memory and anergy: challenges to traditional models of T lymphocyte differentiation. FASEB J 6:2428–2433.

    PubMed  CAS  Google Scholar 

  • Klein DC, Berg GR, Weller J (1979) Melatonin synthesis: adenosine 3’,5’-monophosphate and norepinephrine stimulate N-acetyltransferase. Science 168:979–980.

    Google Scholar 

  • Konakchieva R, Kyurkchiev S, Kehayov I, Taushanova P, Kanchev L (1995) Selective effect of methoxyindoles on the lymphocyte proliferation and melatonin binding to activated human lymphoid cells. J Neuroimmunol 63:125–132.

    PubMed  CAS  Google Scholar 

  • Laitinen JT, Flügge G, Saavedra JM (1990) Characterization of melatonin receptors in the rat area postrema: modulation of affinity with cations and guanine nucleotides. Neuroendocrinology 51:619–624.

    PubMed  CAS  Google Scholar 

  • Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124.

    PubMed  CAS  Google Scholar 

  • Liebmann PM, Hofer D, Felsner P, Wölfler A, Schauenstein K (1996) Beta-blockade enhances adrenergic immunosuppression in rats via inhibition of melatonin release. J Neuroimmunol 67:137–142.

    PubMed  CAS  Google Scholar 

  • Liebmann PM, Wölfler A, Felsner P, Hofer D, Schauenstein K (1997) Melatonin and the immune system. Int Arch Allergy Immunol 112:203–211.

    PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Ardizzoia A, Brivio F, Tancini G, Conti A, Maestroni GJ (1992a) Immunological effects of a single evening subcutaneous injection of low-dose interleukin-2 in association with the pineal hormone melatonin in advanced cancer patients. J Biol Regul Homeost Agents 6:132–136.

    PubMed  CAS  Google Scholar 

  • Lissoni P, Tisi E, Barni S, Ardizzoia A, Rovelli F, Rescaldani R, Ballabio D, Benenti C, Angeli M, Tancini G (1992 b) Biological and clinical results of a neuroimmunotherapy with interleukin-2 and the pineal hormone melatonin as a first line treatment in advanced non-small cell lung cancer. Br J Cancer 66:155–158.

    PubMed  CAS  Google Scholar 

  • Lissoni P, Barni S, Tancini G, Rovelli F, Ardizzoia A, Conti A, Maestroni GJ (1993) A study of the mechanisms involved in the immunostimulatory action of the pineal hormone in cancer patients. Oncology 50:399–402.

    PubMed  CAS  Google Scholar 

  • Lopez-Gonzalez MA, Calvo JR, Osuna C, Guerrero JM (1992a) Interaction of melatonin with human lymphocytes: evidence for binding sites coupled to potentiation of cyclic AMP stimulated by vasoactive intestinal peptide and activation of cyclic GMP. J Pineal Res 12:97–104.

    PubMed  CAS  Google Scholar 

  • Lopez-Gonzalez MA, Calvo JR, Osuna C, Rubio A, Guerrero JM (1992b) Melatonin potentiates cyclic AMP production stimulated by vasoactive intestinal peptide in human lymphocytes. Neurosci Lett 136:150–152.

    PubMed  CAS  Google Scholar 

  • Lopez-Gonzalez MA, Calvo JR, Osuna C, Rubio A, Guerrero JM (1992c) Synergistic action of melatonin and vasoactive intestinal peptide in stimulating cyclic AMP production in human lymphocytes. J Pineal Res 12:174–180.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ (1995) T-helper-2 lymphocytes as a peripheral target of melatonin. J Pineal Res 18:84–89.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ (1998) Kappa-Opioid receptors in marrow stroma mediate the hematopoietic effects of melatonin-induced opioid cytokines. Ann N Y Acad Sci 840:411–419.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A (1989) β-endorphin and dynorphin mimic the circadian immunoenhancing and anti-stress effects of melatonin. Int J Immunopharmacol 11:333–340.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A (1990) The pineal neurohormone melatonin stimulates activated CD4+, Thy-1+ cells to release opioid agonist(s) with immunoenhancing and anti-stress properties. J Neuroimmunol 28:167–176.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A (1991) Anti-stress role of the melatonin-immuno-opioid network: evidence for a physiological mechanism involving T cell-derived, immunoreactive β-endorphin and MET-enkephalin binding to thymic opioid receptors. Int J Neurosci 61:289–298.

    PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A (1993) Melatonin in relation to the immune system. In: Yu H-S, Reiter RJ (eds) Melatonin Biosynthesis, Physiological Effects, and Clinical Applications. CRC Press, Boca Raton, pp 289–309.

    Google Scholar 

  • Maestroni GJ, Pierpaoli W (1981) Pharmacologic control of the hormonally mediated immune response. In: Ader R (ed): Psychoneuroimmunology. Academic Press, pp 405–413.

    Google Scholar 

  • Maestroni GJ, Conti A, Pierpaoli W (1986) Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol 13:19–30.

    CAS  Google Scholar 

  • Maestroni GJ, Conti A, Pierpaoli W (1987) Role of the pineal gland in immunity. II. melatonin enhances the antibody response via an opiatergic mechanism. Clin Exp Immunol 68:384–391.

    CAS  Google Scholar 

  • Maestroni GJ, Conti A, Pierpaoli W (1988) Role of the pineal gland in immunity. III. melatonin antagonizes the immunsuppressive effect of acute stress via an opiatergic mechanism. Immunology 63:465–469.

    CAS  Google Scholar 

  • Maestroni GJ, Covacci V, Conti A (1994a) Hematopoietic rescue via T-cell-dependent, endogenous granulocyte-macrophage colony-stimulating factor induced by the pineal neurohormone melatonin in tumor-bearing mice. Cancer Res 54:2429–2432.

    PubMed  CAS  Google Scholar 

  • Maestroni G J, Conti A, Lissoni P (1994b) Colony-stimulating activity and hematopoietic rescue from cancer chemotherapy compounds are induced by melatonin via endogenous interleukin 4. Cancer Res 54:4740–4743.

    PubMed  CAS  Google Scholar 

  • McLeod SD, Cairncross KD (1995) Preliminary evidence of a synergistic α1- and ßl-adrenoceptor regulation of rat pineal hydroxyindole-O-methyltransferase. Gen Comp Endocrinol 97:283–288.

    PubMed  CAS  Google Scholar 

  • Melchiorri D, Reiter RJ, Sewerynek E, Chen LD, Nistico G (1995) Melatonin reduces kainate-induced lipid peroxidation in homogenates of different brain regions. FASEB J 9:1205–1210.

    PubMed  CAS  Google Scholar 

  • Morrey KM, McLachlan JA, Serkin CD, Bakouche O (1994) Activation of human monocytes by the pineal hormone melatonin. J Immunol 153:2671–2680.

    PubMed  CAS  Google Scholar 

  • Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369.

    PubMed  CAS  Google Scholar 

  • Nghiem P, Ollick T, Gardner P, Schulman H (1994) Interleukin-2 transcriptional block by multifunctional Ca2+/calmodulin kinase. Nature 371:347–350.

    PubMed  CAS  Google Scholar 

  • Ouyang H, Vogel H J (1998) Melatonin and serotonin interactions with calmodulin: NMR, spectroscopic and biochemical studies. Biochim Biophys Acta 1383:37–47.

    PubMed  CAS  Google Scholar 

  • Ovadia H, Nitsan P, Abramsky O (1989) Characterization of opiate binding sites on mebranes of rat lymphocytes. J Neuroimmunol 21:93–102.

    PubMed  CAS  Google Scholar 

  • Pang CS, Pang SF (1992) High affinity specific binding of 2-[125I]iodomelatonin by spleen membrane preparations of chicken. J Pineal Res 12:167–173.

    PubMed  CAS  Google Scholar 

  • Petrovsky N, Harrison LC (1997) Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/T helper cell type 2 balance? J Immunol 158:5163–5168.

    PubMed  CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276.

    Google Scholar 

  • Pioli C, Caroleo MC, Nistico G, Doria G (1993) Melatonin increases antigen presentation and amplifies specific and non specific signals for T-cell proliferation. Int J Immunopharmacol 15: 463–468.

    PubMed  CAS  Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1994) Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:455–460.

    Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1997a) Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65:430–442.

    PubMed  CAS  Google Scholar 

  • Pozo D, Delgado M, Fernandez-Santos JM, Calvo JR, Gomariz RO, Martin-Lacave I, Ortiz GG, Guerrero JM (1997b) Expression of the Mel1a-melatonin receptor mRNA in T and B subsets of lymphocytes from rat thymus and spleen. FASEB J 11:466–473.

    PubMed  CAS  Google Scholar 

  • Rafii-El-Idrissi M, Calvo JR, Pozo D, Harmouch A, Guerrero JM (1995) Specific binding of 2-[125I]iodomelatonin by rat splenocytes: characterization and its role on regulation of cyclic AMP production. J Neuroimmunol 57:171–178.

    PubMed  CAS  Google Scholar 

  • Rafli-El-Idrissi M, Calvo JR, Harmouch A, Garcia-Maurino S, Guerrero JM (1998) Specific binding of melatonin by purified cell nuclei from spleen and thymus of the rat. J Neuroimmunol 86: 190–197.

    Google Scholar 

  • Rapozzi V, Zorzet S, Comelli M, Mavelli I, Perissin L, Giraldi T (1998) Melatonin decreases bone marrow and lymphatic toxicity of adriamycin in mice bearing TLX5 lymphoma. Life Sci 63:1701–1713.

    PubMed  CAS  Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533.

    PubMed  CAS  Google Scholar 

  • Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384.

    PubMed  CAS  Google Scholar 

  • Reiter RJ, Oh CS, Fujimori O (1996) Melatonin: its intracellular and genomic actions. Trends Endocrin Metab 7:22–27.

    CAS  Google Scholar 

  • Reiter RJ, Tang L, Garcia JJ, Munoz-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60:2255–2271.

    PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (1995) Melatonin madness. Cell 83:1059–1062.

    PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Rivkees SAH, Stopa EG (1989) Putative melatonin receptors in a human biological clock. Science 242:78–81.

    Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185.

    PubMed  CAS  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995a) Molecular characterisation of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sei U S A 92:8734–8738.

    CAS  Google Scholar 

  • Reppert SM, Weaver DR, Cassone VM, Godson C, Kolakowski LF Jr (1995b) Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15:1003–1015.

    PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Godson C (1996) Melatonin receptors step into the light: cloning and classification of subtypes. Trend Pharmacol Sci 17:100–102.

    CAS  Google Scholar 

  • Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356.

    PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10: 709–720.

    PubMed  CAS  Google Scholar 

  • Shaji AV, Kulkarni SK, Agrewala JN (1998) Regulation of secretion of IL-4 and IgGl isotype by melatonin-stimulated ovalbumin-specifk T cells. Clin Exp Immunol 111:181–185.

    PubMed  CAS  Google Scholar 

  • Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kahlen JP, Nayeri S, Schrader M, Carlberg C (1995) The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem 270:7037–7040.

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman H J, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radie Biol Med 22:269–285.

    CAS  Google Scholar 

  • Sze SF, Liu WK, Ng TB (1993) Stimulation of murine splenocytes by melatonin and methoxytryptamine. J Neural Transm Gen Sect 94:115–126.

    PubMed  CAS  Google Scholar 

  • Tan DX, Reiter RJ, Chen LD, Poeggeler B, Manchester LC, Barlow-Waiden LR (1994) Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis 15:215–218.

    PubMed  CAS  Google Scholar 

  • Vanecek J (1988) Melatonin binding sites. J Neurochem 51:1436–1440.

    PubMed  CAS  Google Scholar 

  • Vanecek J (1998) Cellular mechanisms of melatonin action. Physiol Rev 78:687–721.

    PubMed  CAS  Google Scholar 

  • Vermeulen M, Palermo M, Giordano M (1993) Neonatal pinealectomy impairs murine antibody-dependent cellular cytotoxicity. J Neuroimmunol 43:97–101.

    PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Meltz ML (1995a) Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat Res 346:23–31.

    PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Sewerynek E, Poeggeler B, Leal BZ, Meltz ML (1995b) Marked reduction of radiation-induced micronuclei in human blood lymphocytes pretreated with melatonin. RadiatRes 143:102–106.

    CAS  Google Scholar 

  • Vijayalaxmi, Reiter RJ, Leal BZ, Meltz ML (1996) Effect of melatonin on mitotic and proliferation indices, and sister chromatid exchange in human blood lymphocytes. Mutat Res 351:187–192.

    PubMed  Google Scholar 

  • Wajs E, Kutoh E, Gupta D (1995) Melatonin affects proopiomelanocortin gene expression in the immune organs of the rat. Eur J Endocrinol 133:754–760.

    PubMed  CAS  Google Scholar 

  • Weiss A, Littman DR (1994) Signal transduction by lymphocytes antigen receptors. Cell 76: 263–274.

    PubMed  CAS  Google Scholar 

  • Wiesenberg I, Missbach M, Kahlen JP, Schräder M, Carlberg C (1995) Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res 23:327–333.

    PubMed  CAS  Google Scholar 

  • Williams JG, Bernstein S, Prager M (1998) Effect of melatonin on activated macrophage TNF, IL-6, and reactive oxygen intermediates. Shock 9:406–411.

    PubMed  CAS  Google Scholar 

  • Wölfler A, Schauenstein K, Liebmann PM (1998) Lack of calmodulin antagonism of melatonin in T lymphocyte activation. Life Sci 63:835–842.

    PubMed  Google Scholar 

  • Wölfler A, Abuja PM, Schauenstein K, Liebmann PM(1999) N-acetylserotonin is a better extra- and intracellular antioxidant than melatonin. FEBS Lett 449:206–210.

    PubMed  Google Scholar 

  • Wölfler A, Caluba HC, Dohr G, Schauenstein K, Liebmann PM: Prooxidant activity of melatonin promotes fas- and ROS-induced cell death in Jurkat cells. Submitted for publication.

    Google Scholar 

  • Yu ZH, Yuan H, Lu Y, Pang SF (1991) [125]Iodomelatonin binding sites in spleens of birds and mammals. Neurosci Lett 125:175–178.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liebmann, P.M., Wölfler, A., Schauenstein, K. (2001). Melatonin and Immune Functions. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics