Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 171))

  • 485 Accesses

Abstract

Successful modelling of complex problems in electromagnetics requires advanced features which make it easier to deal with complexity and describe fine geometrical features. The expedient of increasing the mesh size to allow for a better problem definition leads very quickly to computational demands which far exceed what is available. As an illustration reducing the special step by a factor of two increases storage by a factor of eight and runtime by an even larger factor. In this chapter, techniques are described which attempt to deal with specific problem features in an efficient way without increasing mesh resolution. In addition, the way in which material properties, including frequency dependent properties, can be described in TLM is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans Microwave Theory Tech. vol. 35, pp. 370–377, 1987.

    Article  Google Scholar 

  2. C. Christopoulos, The Transmission-Line Modelling Method: TLM, IEEE Press, New York, 1995.

    Book  Google Scholar 

  3. V. Trenkic, C. Christopoulos and T. M. Benson, “A unified approach to the derivation of TLM node parameters,” First Int Workshop on TLM Modelling-Theory and Applications, 1–3 Aug 1995 University of Victoria, Canada, pp. 193–200.

    Google Scholar 

  4. V. Trenkic, C. Christopoulos and T. M. Benson, “Analytical expansion of the dispersion relation for TLM condensed nodes,” IEEE Trans. Microwave Theory Tech. vol. 144, pp. 2223–2230, Dec. 1996.

    Article  Google Scholar 

  5. R. A. Scaramuzza and A. J. Lowery, “Hybrid symmetrical condensed node for the TLM method,” Electronics Letters vol. 26, no. 23, pp. 1947–1949, Nov. 1990.

    Article  Google Scholar 

  6. P. Berrini and K. Wu, “A pair of hybrid symmetrical condensed TLM nodes,” IEEE Microwave and Guided Wave Letters, vol. 4, no. 7, pp. 244-246, July 1994

    Article  Google Scholar 

  7. V. Trenkic, C. Christopoulos and T. M. Benson, “On the time-step in hybrid symmetrical condensed TLM nodes,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2172–2174,1995.

    Article  Google Scholar 

  8. V. Trenkic, C. Christopoulos and T. M. Benson, “Theory of the symmetrical super-condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech. vol. 43, pp. 1342–1348, June 1995.

    Article  Google Scholar 

  9. V. Trenkic, The development and characterisation of advanced nodes for the TLM method D.Phil. Thesis, University of Nottingham, Nov. 1995.

    Google Scholar 

  10. V. Trenkic, C. Christopoulos and T. M. Benson, “Development of a general symmetrical condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2129–2135, Dec. 1996.

    Article  Google Scholar 

  11. V. Trenkic, C. Christopoulos and T. M. Benson, “Advanced node formulations in TLM-The matched SCN (MSCN),” 12th Annual Progress in Applied Computational Electromagnetics, NPS, Monterey, USA, 18–22 March 1996, pp. 246–253.

    Google Scholar 

  12. V. Trenkic, C. Christopoulos and T. M. Benson, “Advanced node formulations in TLM-The adaptable SCN (ASCN),” IEEE MTT-S Symp., 17–21 July 1996, San Francisco, USA, vol. 2, pp. 431–434.

    Google Scholar 

  13. S. S. Zivanovic, K. S. Yee and K. K. Mei, “A subgriding method for the time-domain finite-difference method to solve Maxwell’s equations,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 471–479, 1991.

    Article  Google Scholar 

  14. I. S. Kim and W. J. R. Hoefer, “A local mesh refinement algorithm for the time-domain finite-difference method using Maxwell’s curl equations,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 812–815, 1990.

    Article  Google Scholar 

  15. J. L. Herring and C. Christopoulos, “Multigrid transmission-line modelling method for solving electromagnetic field problems,” Electronics Letters, vol. 27, pp. 1794–1795,1991.

    Article  Google Scholar 

  16. J. L. Herring and C. Christopoulos, “Solving electromagnetic field problems using a multiple grid transmission-line modelling method,” IEEE Trans, in Antennas Propagat., vol. 42, pp. 1654–1658, 1994.

    Article  Google Scholar 

  17. J. L. Herring, “Developments in the Transmission-Line Modelling method for EMC studies,” D.Phil. Thesis, University of Nottingham, May 1993.

    Google Scholar 

  18. A. J. Wlodarczyk, “New multigrid interface for the TLM method,” Electronics Letters, vol. 32, pp. 1111–1112,1996.

    Article  Google Scholar 

  19. P. Naylor and C. Christopoulos, “A new wire node for modelling thin wires in electromagnetic problems solved by TLM,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 328–330, 1990.

    Article  Google Scholar 

  20. A. J. Wlodarczyk and D. P. Johns, “New wire interface for graded 3D TLM,” Electronics Letters, vol. 28, pp. 728–729, 1992.

    Article  Google Scholar 

  21. J. A. Porti, J. A. Morente, M. Khalladi and A. Callego, “Comparison of thin-wire models for the TLM method,” Electronics Letters, vol. 28, pp. 1910’1911, 1992.

    Article  Google Scholar 

  22. C. Christopoulos, Principles and Techniques of Electromagnetic Compatibility CRC Press, Boca Raton, 1995.

    MATH  Google Scholar 

  23. P. Naylor, C. Christopoulos and P. B. Johns, “Coupling between EM fields and wires using TLM,” IEE Proc. A. vol. 134, pp. 679–686, 1987.

    Google Scholar 

  24. A. Wlodarczyk, V. Trenkic, R. Scaramuzza and C. Christopoulos, “A fully integrated multiconductor model for TLM,” IEEE MTT-S Symp., 7–12 June 1998, Baltimore, USA.

    Google Scholar 

  25. J. S. Nielsen and W. J. R. Hoefer, “Modification of the condensed 3D TLM node to improve modelling of conductor edges,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp. 105–107, March 1992.

    Article  Google Scholar 

  26. A. P. Duffy, J. L. Herring, T. M. Benson and C. Christopoulos, “Improved wire modelling in TLM,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 10, pp. 1978–1983, October 1994.

    Article  Google Scholar 

  27. J. L. Herring and W. J. R. Hoefer, “Accurate modelling of zero thickness septa with the symmetrical condensed node,” First Int Conf on TLM Modelling-Theory and Applications, 1–3 August 1995, University of Victoria, Canada, pp. 237–240.

    Google Scholar 

  28. L. Cascio, G. Tardioli, T. Rozzi and W. J. R. Hoefer, “Quasi-static correction of a knife edge corner in 2D TLM algorithm,” 12th Annual Review of Progress in Computational Electromagnetics 18–22 March 1996, Monterey, CA, USA, pp. 317–324.

    Google Scholar 

  29. A. C. Cangellaris and D. B. Wright, “Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FD-TD simulations of electromagnetic phenomena,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1518–1525,1991.

    Article  Google Scholar 

  30. U. Muller and W. J. R. Hoefer, “The implementation of smoothly moving boundaries in 2D and 3D TLM simulations,” Proc. of IEEE MTT-S Symp. Albuquerque, NM, 1992, pp. 791–792.

    Google Scholar 

  31. F. J. German, “Infinitesimally adjustable boundaries in SCN node simulations,” Proc. 9th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, USA, 22–26 March 1993, pp. 482–490.

    Google Scholar 

  32. D. P. Johns, A. J. Wlodarczyk and A. Mallik, “New TLM models for thin structures,” Proc. Int. Conf on Computation in Electromagnetics London, IEE Conf. Publ. 350, pp. 335–338,1991.

    Google Scholar 

  33. V. Trenkic, A. P. Duffy, T. M. Benson and C. Christopoulos, “Numerical simulation of penetration and coupling using the TLM method,” Proc. Int. Symp. on EMC, 13–16 September 1994, Rome, pp. 321–326.

    Google Scholar 

  34. V. Trenkic, C. Christopoulos and T. M. Benson, “Numerical simulation of polymers and other materials for electronic shielding applications,” Proc. Eighth Int. Conf Polymat. ’94, 19–22 September 1994, Imperial College, London, pp. 384–387.

    Google Scholar 

  35. C. H. Fuchs, G. Kopp and A. J. Schwab, “Computation of 3D shielding enclosures with TLM,” First Int. Workshop on TLM Modelling-Theory and Applications, 1–3 August 1995, University of Victoria, Canada, pp. 201–204.

    Google Scholar 

  36. C. Christopoulos, “Propagation of surges above the corona threshold on a line with a lossy earth return,” Int. Comp. Math, in Electrical and Electronic Engineering, vol. 4, no 2, pp. 91–102,1985.

    Article  Google Scholar 

  37. J. F. Dawson, “Representing ferrite absorbing tiles as frequency dependent boundaries in TLM,” Electronics Letters, vol. 29, no 9, pp. 791–792, 29 April 1993.

    Article  Google Scholar 

  38. J. Paul, C. Christopoulos and D. W. P. Thomas, “Modelling of RF absorbing material for anachoic chambers,” Second Int. Workshop on TLM, 29–31 October 1997, University of Munich, Germany, pp. 167–176.

    Google Scholar 

  39. J. Paul, C. Christopoulos and D. W. P. Thomas, “Modelling of Debye material in ID and 2D TLM schemes,” Int. Symp. on EM Theory, URSI Commission B, Thessaloniki, 25–28 May 1998.

    Google Scholar 

  40. J. Paul, C. Christopoulos, D. W. P. Thomas, “Modelling of antennas in close proximity to biological tissues using the TLM method,” ACES ’98, 16–20 March 1998, Monterey, USA.

    Google Scholar 

  41. S. Y. R. Hui and C. Christopoulos, “Discrete transform for solving non-linear circuits and equations,” IEE Proc., Pt. A., vol. 139, no. 6, pp. 321–328, Nov. 1992.

    Google Scholar 

  42. C. J. Smartt and C. Christopoulos, “Modelling non-linear dispersive propagation problems by the TLM method,” IEE Proc. Microwaves, Antennas and Propagat.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christopoulos, C. (2000). Enhancements to TLM. In: Uzunoglu, N.K., Nikita, K.S., Kaklamani, D.I. (eds) Applied Computational Electromagnetics. NATO ASI Series, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59629-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59629-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64059-9

  • Online ISBN: 978-3-642-59629-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics