Skip to main content

Transport Properties

  • Chapter
Semiconducting Silicides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 39))

Abstract

In this chapter we present the effect of external electric and magnetic fields on free carriers in semiconducting silicides. The case of weak fields producing changes in the distribution of electron velocities, which are a small perturbation of the equilibrium distribution, is considered. The behavior of carriers in this case can be described by Ohm’s law. The electrical conductivity σ in an isotropic semiconductor in which both free electrons and free holes contribute to the flow of current, can be expressed as

σ = e(neμe + nhμh) (5.1)

Here e is the electron charge, μ e and μ h are the mobilities of electrons and holes, respectively, and n e and n h are the corresponding charge carrier concentrations. The inverse conductivity 1/σ = ρ is called resistivity. Practically important, σ is closely connected with the fundamental electronic properties of the material, which are n and μ. Thus, the transport properties of an electron gas in a semiconductor can be described most conveniently in terms of these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Blakemore: Solid State Physics (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  2. R.A. Smith: Semiconductors (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  3. B.K. Ridley: Quantum Processes in Semiconductors (Clarendon Press, Oxford 1982).

    Google Scholar 

  4. V.L. Bonch-Bruevich, S.G. Kalashnikov: Semiconductor Physics (Nauka, Moscow, 1990) (in Russian).

    Google Scholar 

  5. P.Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, Berlin, 1995).

    Google Scholar 

  6. L.N. Guseva, B.I. Ovechkin: Thermoelectric properties of chromium silicides, Dokl. Akad. Nauk SSSR 112(4), 681–683 (1957) (in Russian).

    CAS  Google Scholar 

  7. P.V. Gel’d: Thermal and thermoelectric properties of transition metal-silicon alloys, Zurn. Tekn. Fiz. 27(1), 113–118 (1957) (in Russian).

    Google Scholar 

  8. V.S. Neshpor, G.V. Samsonov: Investigation of electrical conductance of transition metal silicides, Sov. Phys. -SolidState, 2(9), 1966–1970 (1960).

    Google Scholar 

  9. R.G. Morris, R.D. Redin, G.C. Danielson: Semiconducting properties of Mg2Si single crystals, Phys. Rev. 109(6), 1909–1915 (1958).

    Article  CAS  Google Scholar 

  10. S.P. Murarka, M.H. Read, C.J. Doherty, D.B. Fraser: Resistivity of thin film transition metal silicides, J. Electrochem. Soc. 129(2), 293–301 (1982).

    Article  CAS  Google Scholar 

  11. C.P. Susz, J. Muller, K. Yvon, E. Parthe: Diffusionless phase transformations of Ru2Si3, Ru2Ge3 and Ru2Sn3, II: Electrical and magnetic properties, J. Less- Common Met. 71(1), P1–P8 (1980).

    Article  CAS  Google Scholar 

  12. S. Petersson, J.A. Reimer, M.H. Brodsky, D.R.Campbell, F.M. d’Heurle, B. Karlsson, P.A. Tove: IrSi1.75 a new semiconductor compound, J. Appl. Phys. 53(4), 3342–3343 (1982).

    Article  CAS  Google Scholar 

  13. K.Mason, G. Müller-Vogt: Osmium disilicide: preparation, crystal growth, and physical properties of a new semiconducting compound, J. Cryst. Growth 63(1), 34–38(1983).

    Article  CAS  Google Scholar 

  14. L. Schellenberg, H.F. Braun, J. Muller: The osmium-silicon phase diagram, J. Less-Common Met. 144(2), 341–350 (1988).

    Article  CAS  Google Scholar 

  15. F. Nava, B.Z.Weiss, K.Y. Ahn, D.A.Smith, K.N. Tu: Thermal stability and electrical conduction behavior of coevaporated WSi2±x thin films, J. Appl. Phys. 64(1), 354–364 (1988).

    Article  CAS  Google Scholar 

  16. O. Bisi, L. Braicovich, C. Carbone, I. Lindau, A. Iandelli, G.L. Olcese, A. Palenzona: Chemical bond and electronic state in calcium silicides: Theory and comparison with synchrotron-radiation photoemission, Phys. Rev. B 40(15), 10194–10209(1989).

    Article  CAS  Google Scholar 

  17. C.R.Whitsett, G.C.Danielson: Electrical properties of the semiconductors Mg2Si and Mg2Ge, Phys. Rev. 100(4), 1261–1262, (1955).

    Google Scholar 

  18. R.J. LaBotz, D.R. Mason, D.F. O’Kane: The thermoelectric properties of mixed crystals of Mg2GerSi1-x J Electrochem. Soc. 110(2), 127–134 (1963).

    Article  CAS  Google Scholar 

  19. U.Winkler: Die elektrischen Eigenschaften der intermetallischen Verbindungen Mg2Si, Mg2Ge, Mg2Sn und Mg2Pb, Helv. Phys. Acta. 28(7), 633–666 (1955).

    CAS  Google Scholar 

  20. S. Bose, H.N. Achaiya, H.D. Banerjee: Electrical, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk, J. Mater. Sci. 28(20), 5461–5468 (1993).

    Article  CAS  Google Scholar 

  21. V.S. Neshpor, V.L. Upko: Investigation of formation conditions and some physical properties of barium disilicide, J. Appl Chem. 36(5), 1139–1142 (1963) (in Russian).

    CAS  Google Scholar 

  22. J. Evers, A. Weiss: Electrical properties of alkaline earth disilicides and digermanides, Mater. Res. Bull. 9(5), 549–554 (1974).

    Article  CAS  Google Scholar 

  23. M. Imai, T. Hirano: Electrical resistivity of metastable phases of BaSi2 synthesized under high pressure and high temperature, J. Alloys Comp. 224(1), 111–116 (1995).

    Article  CAS  Google Scholar 

  24. I. Nishida: The crystal growth and thermoelectric properties of chromium disilicide, J. Mater. Sci. 7(10), 1119–1124 (1972).

    Article  CAS  Google Scholar 

  25. T. Hirano, M. Kaise: Electrical resistivities of single-crystalline transition-metal disilicides, J. Appl Phys. 68(2), 627–633 (1990).

    Article  CAS  Google Scholar 

  26. D. Shinoda, S. Asanabe, Y. Sasaki: Semiconducting properties of chromium disilicide, J. Phys. Soc. Jap. 19(3), 269–272 (1964).

    Article  CAS  Google Scholar 

  27. S.F. Gong, X.-H. Li, H.T.G. Hentzell, J. Strandberg: Electrical and structural properties of thin film of sputtered CrSi2, Thin Solid Films 208(1), 91–95 (1992).

    Article  CAS  Google Scholar 

  28. F. Nava, T. Tien, K.N. Tu: Temperature dependence of semiconducting and structural properties of Cr-Si thin films, J. Appl. Phys. 57(6), 2018–2025 (1985).

    Article  CAS  Google Scholar 

  29. V.E. Borisenko, L.I. Ivanenko, S.Yu. Nikitin: Semiconducting properties of chromium disilicide, Mikroelektronika 21(2), 61–77 (1992) (in Russian).

    Google Scholar 

  30. M.C. Bost, J.E. Mahan: An investigation of the optical constants and band gap of chromium disilicide, J. Appl. Phys. 63(3), 839–844 (1988).

    Article  CAS  Google Scholar 

  31. N.G. Galkin, T.V. Velitchko, S.V. Skripka, A.B. Khrustalev: Semiconducting and structural properties of CrSi2 A-type epitaxial films on Si(111), Thin Solid Films 280(1–2), 211–220 (1996).

    Article  CAS  Google Scholar 

  32. I. Kawasumi, M. Sakata, I. Nishida, K. Masumoto: Crystal growth of manganese silicide, MnSi1.73 and semiconducting properties of Mn15Si26, J. Mater. Sci. 16(2), 355–366(1981).

    Article  CAS  Google Scholar 

  33. I. Nishida: Semiconducting properties of nonstoichiometric manganese silicides, J. Mater. Sci. 7, 435–440 (1972).

    Article  CAS  Google Scholar 

  34. M. Eizenberg, K.N. Tu: Formation and Schottky behavior of manganese silicides on n-type silicon, J. Appl. Phys. 53(10), 6885–6890 (1982).

    Article  CAS  Google Scholar 

  35. S. Teichert, R. Kilper, J. Erben, D. Franke, B. Gebhard, T. Franke, P. Haussler, W. Henrion, H. Lange: Preparation and properties of thin polycrystalline MnSi1 73 films, Appl. Surf. Sci. 104/105, 679–684 (1996).

    Article  CAS  Google Scholar 

  36. Ch. Krontiras, K. Pomoni, M. Roilos: Resistivity and the Hall effect for thin MnSi1 73 films, J. Phys. D: Appl. Phys. 21 (3), 509–512 (1988).

    Article  CAS  Google Scholar 

  37. U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte, O. Laborde, A. Rouault, R. Madar: Structural and electronic transport properties of ReSi2-δ single crystals, J. Appl. Phys. 78(6) 3902–3907 (1995).

    Article  CAS  Google Scholar 

  38. C. Krontiras, L. Grönberg, I. Suni, F.M. d’Heurle, J. Tersoff, I. Engstrom, B. Karlsson, C.S. Petersson: Some properties of ReSi2, Thin Solid Films 161(1/2), 197–206(1988).

    Article  CAS  Google Scholar 

  39. R.G. Long, M.C. Bost, J.E. Mahan: Optical and electrical properties of semiconducting rhenium disilicide thin films, Thin Solid Films 162(1/2), 29–40 (1988).

    Article  CAS  Google Scholar 

  40. I. Ali, P. Muret, T.A. Nguyen Tan: Properties of semiconducting rhenium silicide thin films grown epitaxially on silicon (111), Appl. Surf. Sci. 102, 147–150 (1996).

    Article  CAS  Google Scholar 

  41. E. Arushanov, Ch. Kloc, E. Bucher: Impurity band in p-type β-FeSi2, Phys. Rev. B 50(4), 2653–2656 (1994).

    Article  CAS  Google Scholar 

  42. S. Brehme, L. Ivanenko, Y. Tomm, G.-U. Reinsperger, H. Lange: Hall effect investigation of doped and undoped p-FeSi2, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T. Tung, K. Maex, P.W. Pellegrini, L.H. Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 355–360.

    Google Scholar 

  43. G. Behr, J. Werner, G.Weise, A. Heinrich, A. Burkov, C. Gladun: Preparation and properties of high-purity β-FeSi2 single crystals, Phys. Stat. Sol. (a) 160(2), 549–556(1997).

    Article  CAS  Google Scholar 

  44. O. Valassiades, C.A. Dimitriadis, J.H. Werner: Galvanomagnetic behavior of semiconducting FeSi2 films, J. Appl. Phys. 70(2), 890–893 (1991).

    Article  CAS  Google Scholar 

  45. C.A. Dimitriadis, J.H. Werner, S. Logothetidis, M. Stutzmann, J. Weber, R. Nesper: Electronic properties of semiconducting FeSi2 films, J. Appl. Phys. 68(4), 1726–1734 (1990).

    Article  CAS  Google Scholar 

  46. D.H. Tassis, C.L. Mitsas, T.T. Zorba, C.A. Dimitriadis, O. Valassiades, D.I. Siapkas, M. Angelakeris, P. Poulopoulos, N.K. Flevaris, G. Kiriakidis: Infrared spectroscopic and electronic transport properties of polycrystalline semiconducting FeSi2 thin films, J. Appl. Phys. 80(2), 962–968 (1996).

    Article  CAS  Google Scholar 

  47. A. Rizzi, B.N.E. Rosen, D. Freundt, Ch. Dieker, H. Luth, D. Gerthsen: Heteroepitaxy of P-FeSi2 on Si by gas-source MBE, Phys. Rev. B 51(24), 17780–17794(1995).

    Article  CAS  Google Scholar 

  48. K. Radermacher, R. Carius, S. Mantl: Optical and electrical properties of buried semiconducting β-FeSi2, Nucl. Instrum. Methods Phys. Res. B 84(1), 163–167 (1994).

    Article  CAS  Google Scholar 

  49. U. Gottlieb, O. Laborde, A. Rouault, R. Madar: Resistivity of Ru2Si3 single crystals, Appl. Surf. Sci. 73, 243–245 (1993).

    Article  CAS  Google Scholar 

  50. T. Ohta, C.B. Vining, C.E. Allevato: Characteristics of a promising new thermoelectric material: ruthenium silicide, in: Proceedings of the 26 th Intersociety Energy Conversion Engineering Conference, vol. 3 (American Nuclear Society, La Grange Park, IL, 1991), pp. 196–201.

    Google Scholar 

  51. C.B. Vining, C.E. Allevato: Intrinsic thermoelectric properties of single crystal Ru2Si3, in: Proceedings of the 10 th International Conference on Thermoelectrics, edited by D.M. Rowe (Babrow Press, Cardiff, 1991), pp. 167–173.

    Google Scholar 

  52. F.M. d’Heurle, R.D. Frampton, E.A. Irene, H. Jiang, C.S. Petersson: Rate of formation of silicon dioxide; semiconducting ruthenium silicide, Appl. Phys. Lett. 47(11), 1170–1172 (1985).

    Article  Google Scholar 

  53. T. Ohta, A. Yamamoto, T. Tanaka, Y. Sawade, K. Kamisako, T. Horigome: Progress in thermoelectric properties of undoped ruthenium sesquisilicide by HIP method, in: Proceedings of the 12 th International Conference on Thermoelectrics (Yokohama, 1993), pp. 393–396.

    Google Scholar 

  54. C.E. Allevato, C.B. Vining: Thermoelectric properties of semiconducting iridium silicides, in: Proceedings of the 28 th Intersociety Energy Conversion Engineering Conference 1, 1.239–1.243 (1993).

    Google Scholar 

  55. C.E. Allevato, C.B. Vining: Phase diagram and electrical behavior of silicon-rich iridium silicide compounds, J. Alloys Comp. 200 (12), 99–105 (1993).

    Article  CAS  Google Scholar 

  56. C.E. Allevato, C.B. Vining: Phase diagram and electrical behavior of silicon-rich iridium silicide compounds, in: Proceedings of the 27 th Inter society Energy Conversion Engineering Conference 3, 3.493–3.497 (1992).

    Google Scholar 

  57. J. Evers: Semiconductor-metal transition in BaSi2, J. Less-Common Met. 58(1), 75–83 (1978).

    Article  CAS  Google Scholar 

  58. M. Imai, T. Hirano: Electrical resistivity of three polymorphs of BaSi2 and P-T phase diagram, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T.Tung, K. Maex, P.W.Pellegrini, L.H.Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 567–572.

    Google Scholar 

  59. M. Imai, K. Hirata, T. Hirano: Superconductivity of trigonal BaSi2, Physica C 245(1), 12–14(1995).

    Article  CAS  Google Scholar 

  60. S. Fahy, D.R. Hamann: Electronic and structural properties of CaSi2. Phys. Rev. B 41(11), 7587–7592(1990).

    Article  CAS  Google Scholar 

  61. I.J. Ohsugi, T. Kojima, I.A. Nishida: Temperature dependence of the magnetic susceptibility of a CrSi2 single crystals, Phys. Rev. B 42(16), 10761–10764 (1990).

    Article  CAS  Google Scholar 

  62. I. Nishida, T. Sakata: Semiconducting properties of pure and Mn-doped chromium disilicides, J. Phys. Chem. Solids 39(5), 499–505 (1978).

    Article  CAS  Google Scholar 

  63. V.E. Borisenko, D.I. Zarovskii, G.V. Litvinovich, V.A. Samuilov: Optical spectroscopy of chromium silicide formed by a flash heat treatment of chromium films on silicon, Zurn. Prikl. Spectrosk. 44(2), 314–317 (1986) (in Russian).

    CAS  Google Scholar 

  64. J.C. Lasjaunias, U. Gottlieb, O. Laborde, O. Thomas, R. Madar: Transport and low temperature specific heat measurements of CrSi2 single crystals, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T. Tung, K. Maex, P.W. Pellegrini, L.H. Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 343–348.

    Google Scholar 

  65. V.V. Kleshkovskaya, T.S. Kamilov, S.I. Adasheva, S.S. Khudaiberdiev, V.I. Muratova: Crystal structure of the films of highest manganese silicide on silicon, Crystallography Reports 39(5), 815–819 (1994).

    Google Scholar 

  66. U. Gottlieb, M. Affronte, F. Nava, O. Laborde, A. Sulpice, R. Madar: Some physical properties of ReSi1.75 single crystals, Appl. Surf. Sci. 91(1), 82–86 (1995).

    Article  CAS  Google Scholar 

  67. A.T. Burkov, A. Heinrich, G. Gladun, W. Pitschke, J. Schumann: Structure and thermoelectric properties of nanocrystalline Rex-Si1-x thin film composites, in: Proceedings of the 15 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1996), p. 484.

    Google Scholar 

  68. V.K. Zaitsev: Thermoelectric properties of anisotropic MnSi1.75, in: CRC Handbook on Thermoelectrics, edited by D.M. Rowe (CRC Press, New York, 1994), pp. 299–309.

    Google Scholar 

  69. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, V.E. Borisenko, H. Lange, A. Heinrich: Electronic properties of semiconducting rhenium silicide, Europhys. Lett. 46(3), 376–381 (1999).

    Article  CAS  Google Scholar 

  70. J.-I. Tani, H. Kido: Electrical properties of Co-doped and Ni-doped p-FeSi2, J. Appl. Phys. 84(3), 1408–1411 (1998).

    Article  CAS  Google Scholar 

  71. M. Komabayashi, K. Hijikata, S. Ido: Effects of some additives on thermoelectric properties of FeSi2 thin films, Jpn. J. Appl. Phys. 30(2), 331–234 (1991).

    Article  CAS  Google Scholar 

  72. T. Kojima: Semiconducting and thermoelectric properties of sintered iron disilicide, Phys. Stat. Sol. (a) 111(1), 233–242 (1989).

    Article  CAS  Google Scholar 

  73. U. Birkholz, J. Schelm: Mechanism of electrical conduction in ß-FeSi2, Phys. Stat. Sol. 27, 413–425 (1968).

    Article  CAS  Google Scholar 

  74. Y. Isoda, M.A. Okamoto, T. Ohkoshi, I.A. Nishida: Semiconducting properties and thermal shock resistance of boron doped iron disilicide, in: Proceedings of the 12 th International Conference on Thermoelectrics (Yokohama, 1993), pp. 192–196.

    Google Scholar 

  75. A. Heinrich, A. Burkov, C. Gladun, G. Behr, K. Herz, J. Schumann, H. Powalla: Thermopower and electrical resistivity of undoped and Co-doped β-FeSi2 single crystals and β-FeSi2+x thin films, in: Proceedings of the 15 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1996), pp. 57–6.

    Google Scholar 

  76. M.I. Fedorov, M.A. Khazan, A.E. Kaliazin, V.K. Zaitsev, N.F. Kartenko, A.E. Engalychev: Properties of iron disilicide doped with Ru, Rh and Pd, in: Proceedings of the 15 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1996), pp. 75–78.

    Google Scholar 

  77. H. von Känel, U. Kafader, P. Sutter, N. Onda, H. Sirringhaus, E. Müller, U. Kroll, C. Schwarz, S. Goncalves-Conto: Epitaxial semiconducting and metallic iron silicides, in: Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, K.N. Tu (MRS, Pittsburgh, Pennsylvania, 1994), pp. 73–84.

    Google Scholar 

  78. P. Muret, I.Ali: Transport properties of unintentionally doped iron silicide thin films on silicon (111), J. Vac. Sei. Technol. B 16(3), 1663–1666 (1998).

    Article  CAS  Google Scholar 

  79. G. Behr, L. Ivanenko, H. Vinzelberg, A. Heinrich: Single crystal growth of non- stoichiometric ß-FeSi2 by chemical transport reaction, (1999) (to be published).

    Google Scholar 

  80. K. Irmscher, W. Gehlhoff, Y. Tomm, H. Lange, V. Alex: Iron group impurities in β-FeSi2 studied by EPR, Phys. Rev. B 55(7), 4417–4425 (1997).

    Article  CAS  Google Scholar 

  81. M.C. Bost, J.E. Mahan: Optical properties of semiconducting iron disilicide thin films, J. Appl. Phys. 58(7), 2696–2703 (1985).

    Article  CAS  Google Scholar 

  82. S. Brehme, P. Lengsfeld, P. Stauss, H. Lange, W. Fuhs: Hall effect and resistivity of ß-FeSi2 thin films and single crystals, J. Appl. Phys. 84(6), 3187–3196 (1998).

    Article  CAS  Google Scholar 

  83. Y. Tomm, L. Ivanenko, K. Irmscher, St. Brehme, W. Henrion, I. Sieber, H. Lange: Effects of doping on the electronic properties of semiconducting iron disilicide, Mat. Sei. Eng. B 37, 215–218 (1996).

    Article  Google Scholar 

  84. K.G. Lisunov, E. K. Arushanov, Ch. Kloc, U. Malang, E. Bucher: Hopping conductivity in p-type β-FeSi2, Phys. Stat. Sol. (b) 195(1), 227–236 (1996).

    Article  CAS  Google Scholar 

  85. N.F. Mott, E.A. Davies: Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).

    Google Scholar 

  86. B.I. Shklovskii, A.L. Efros: Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Google Scholar 

  87. D.H. Tassis, C.A. Dimitriadis, O. Valassiades: The Meyer-Neldel rule in the conductivity of polycrystalline semiconducting FeSi2 films, J. Appl. Phys. 84(5), 2960–2962 (1998).

    Article  CAS  Google Scholar 

  88. A. Heinrich, C. Gladun, A. Burkov, Y. Tomm, S. Brehme, H. Lange: Thermopower and electrical resistivity of β-FeSi2 single crystals doped with Cr, Co and Mn, in: Proceedings of the 14 th International Conference on Thermoelectrics, (Ioffe-Institute, St. Petersburg, 1995), pp. 259–263.

    Google Scholar 

  89. U. Gottlieb, R. Madar, O. Laborde: Low temperature transport properties of Ru2Si3single crystals, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T.Tang, K. Maex, P.W.Pellegrini, L.H.Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 581–586.

    Google Scholar 

  90. J. Schumann, D. Elefant, C. Gladun, A. Heinrich, W. Pitschke, H. Lange, W. Henrion, R. Grötzschel: Polycrystalline iridium silicide films. Phase formation, electrical and optical properties, Phys. Stat. Sol. (a) 145(2), 429–439 (1994).

    Article  CAS  Google Scholar 

  91. W. Pitschke, R. Kurt, A. Heinrich, J. Schumann, J. Thomas, M. Mader: Structure and phase formation in amorphous IrxSi1-x thin films at high temperatures, in: Proceedings of the 15 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1996), pp. 499–503.

    Google Scholar 

  92. B.R. Nag: Electron Transport in Compound Semiconductors (Springer, Berlin, 1980).

    Google Scholar 

  93. J.T. Nelson: Electrical and optical properties of Mg2Sn and Mg2Si, Am. J. Phys. 23, 390, (1955).

    Google Scholar 

  94. G. Beddies: Electrical properties of flash vapor-deposited chromium disilicide thin films, Wiss. Z. - Tech. Hochsch. Karl-Marx-Stadt 22(7), 695–707 (1980).

    CAS  Google Scholar 

  95. G.V. Samsonov, L.A. Dvorina, B.M. Rud: Silicides (Metallurgiya, Moscow, 1979) (in Russian); G.V. Samsonov, I.M. Vinitskii: Handbook of Refractory Compounds (IFI/Plenum, New York, 1980).

    Google Scholar 

  96. D.J. Oostra, C.W.T. Bulle-Lieuwma, D.E.W. Vandenhoudt, F. Felten, J.C.Jans: β-FeSi2 in (111) Si and in (001) Si formed by ion-beam synthesis, J. Appl. Phys. 74(7), 4347–4353 (1993).

    Article  CAS  Google Scholar 

  97. M. Pauli, M. Dűcker, M. Döscher, J. Műller, W. Henrion, H. Lange: Characterization of the heterostructure between heteroepitaxially grown β-FeSi2and (111) silicon, Mater. Sci. Eng. B21, 270–273 (1993).

    Article  CAS  Google Scholar 

  98. M. Döscher, B. Selle, M. Pauli, F. Kothe, J. Szymanski, J. Muller, H. Lange: Influence of stoichiometric variations and rapid thermal processing of P-FeSi2 thin films on their electrical and microstructural properties, in: Silicide Thin Films - Fabrication, Properties, and Applications, edited by R.T. Tung, K. Maex, P.W. Pellegrini, L.H. Allen (MRS, Pittsburgh, Pennsylvania, 1996), pp. 325–330.

    Google Scholar 

  99. K. Herz, M. Powalla: Electrical and optical properties of thin β-FeSi2 films on A12O3 substrates, Appl. Surf. Sci. 91(1), 87–92 (1995).

    Article  CAS  Google Scholar 

  100. D.H. Tassis, C.A. Dimitriadis, S. Boultadakis, J. Arvanitidis, S. Ves, S. Kokkou, S. Logothetidis, O. Valassiades, P. Poulopoulos, N.K. Flevaris: Influence of conventional furnace and rapid thermal annealing on the quality of polycrystalline β-FeSi2 thin films grown from vapor-deposited Fe/Si multilayers, Thin Solid Films 310, 115–122(1997).

    Article  CAS  Google Scholar 

  101. W. Shockley, in: Electrons and Holes in Semiconductors (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950), Chap. 8.

    Google Scholar 

  102. A.B. Filonov, I.E. Tralle, N.N. Dorozhkin, D.B. Migas, V.L. Shaposhnikov, G.V. Petrov, A.M. Anishchik, V.E. Borisenko: Semiconducting properties of hexagonal chromium, molybdenum, tungsten disilicides, Phys. Stat. Sol. (b) 186(1), 209–215(1994).

    Article  CAS  Google Scholar 

  103. A.E.White, K.T. Short, D.J. Eaglesham: Electrical and structural properties of Si/CrSi2/Si heterostructures fabricated using ion implantation, Appl. Phys. Lett. 56(13), 1260–1262 (1990).

    Article  CAS  Google Scholar 

  104. N.E. Christensen: Electronic structure of β-FeSi2, Phys. Rev. B 42(11), 7148–7153 (1990).

    Article  CAS  Google Scholar 

  105. E. Arushanov, Y. Tomm, L. Ivanenko, H. Lange: Hole mobility in Cr-doped p- type β-FeSi2 single crystals, Phys. Stat. Sol. (b) 210(1), 187–194 (1998).

    Article  CAS  Google Scholar 

  106. W. Henrion, St. Brehme, I. Sieber, H. von Känel, Y. Tomm, H. Lange: Optical and electrical properties of iron disilicide with different degree of structural perfection, Solid State Phenom. 51/52, 341–346 (1996).

    Article  Google Scholar 

  107. E. Arushanov, Ch. Kloc, H. Hohl, E. Bucher: The Hall effect in β-FeSi2 single crystals, J. Appl. Phys. 75(10), 5106–5109 (1994).

    Article  Google Scholar 

  108. S. Teichert, G. Beddies, Y. Tomm, H.-J. Hinneberg, H. Lange: A pronounced hysteresis effect observed in Hall measurements on β-FeSi2 single crystals at 4.2 K, Phys. Stat. Sol. (a) 152(1), K15–K18 (1995).

    Article  CAS  Google Scholar 

  109. H. Lange: Electronic properties of semiconducting silicides, Phys. Stat. Sol (b) 201(1), 3–65(1997).

    Article  CAS  Google Scholar 

  110. A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, H. Lange: Electronic and related properties of crystalline semiconducting iron disilicide, J. Appl. Phys. 79(10), 7708–7712 (1996).

    Article  CAS  Google Scholar 

  111. P. Lengsfeld, S. Brehme, G. Ehlers, H. Lange, N. Stusser, Y. Tomm, W. Fuhs: Anomalous Hall effect in β-FeSi2, Phys. Rev. B 58 (24), 16154–16159 (1998).

    Article  CAS  Google Scholar 

  112. J. Smith: The spontaneous Hall effect in ferromagnetics II, Physica 24(1), 39–51 (1958).

    Article  Google Scholar 

  113. L. Berger: Side-jump mechanism for the Hall effect of ferromagnets, Phys. Rev. B 2(11), 4559–4566(1970).

    Article  Google Scholar 

  114. J.L. Regolini, F. Trincat, I. Sagnes, Y. Shapira, G. Bremond, D. Bensahel: Characterization of semiconducting iron disilicide obtained by LRP/CVD, IEEE Trans. Electron Devices 39(1), 200–201 (1992).

    Article  CAS  Google Scholar 

  115. A.B. Filonov, I.E. Tralle, D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko: Transport properties simulation of p-type β-FeSi2, Phys. Stat. Sol (b) 203(1), 183–187(1997).

    Article  CAS  Google Scholar 

  116. N.P. Barradas, D. Panknin, E. Wieser, B. Schmidt, M. Betzl, A. Mucklich, W. Skorupa: Influence of the ion irradiation on the properties of P-FeSi2 layers prepared by ion beam assisted deposition, Nucl. Instrum. Methods Phys. Res. B 127/128,316–320(1997).

    Article  CAS  Google Scholar 

  117. D.H. Tassis, C.L. Mitsas, T.T. Zorba, M. Angelakeris, C.A. Dimitriadis, O. Valassiades, D.I. Siapkas, G. Kiriakidis: Optical and electrical characterization of high quality β-FeSi2 thin films grown by solid phase epitaxy, Appl. Surf. Sci. 102, 178–183 (1996).

    Article  CAS  Google Scholar 

  118. C.B. Vining, C.E. Allevato: Progress in doping of ruthenium silicide (Ru2Si3), in: Proceedings of the 27 th Intersociety Energy Conversion Engineering Conference, vol. 3 (San Diego, CA, 1992), pp. 3.489–3.492.

    Google Scholar 

  119. Y. Arita, T. Miyagawa, T. Matsui: Thermoelectric properties of Ru2Si3 prepared by FZ and arc-melting methods, in: Proceedings of the 17 th International Conference on Thermoelectrics (IEEE, Inc., 1998), pp. 394–397.

    Google Scholar 

  120. A. Yamamoto, T. Ohta, Y. Sawade, T. Tanaka, K. Kamisako: Investigation of dopants for ruthenium silicide, in: Proceedings of the 14 th International Conference on Thermoelectrics (Ioffe-Institute, St. Petersburg, 1995), pp. 264–268.

    Google Scholar 

  121. I. Nishida: Stabilitiy of silicide compounds, J. Mater. Sci. Soc. Jpn. 15 (1978) 72–86 (in Japanese).

    CAS  Google Scholar 

  122. C.B. Vining: Silicides as promising thermoelectric materials, in: Proceedings of the 9 th International Conference on Thermoelectrics (JPL, CalTech, Pasadena, 1990), pp. 249–259; Thermoelectric properties of silicides, in: CRC Handbook on Thermoelectrics, edited by D.M. Rowe (CRC Press, 1994), pp. 277–28.

    Google Scholar 

  123. U. Birkholz, E. Gross, U. Stoehrer: Polycrystalline iron disilicide as a thermoelectric generator material, in: CRC Handbook on Thermoelectrics, edited by D.M. Rowe (CRC Press, 1994), pp. 287–298.

    Google Scholar 

  124. C.B. Vining: The thermoelectric limit ZT ≈ 1: Fact or artifact, in: Proceedings of the 11 th International Conference on Thermoelectrics (University of Texas at Arlington, Arlington, 1992), pp. 223–231.

    Google Scholar 

  125. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, K. Masumoto: Preparation and thermoelectric properties of Mg2Si1-xGex (x=0.0–0.4) solid solution semiconductors, Mater. Trans., JIM 33(9), 845–850 (1992).

    CAS  Google Scholar 

  126. C.B. Vining: Extrapolated thermoelectric figure of merit of ruthenium silicide, Proc. Symp. on Space Nuclear Power Systems, AJP Conf. Proc. 246, 338–342 (1992).

    CAS  Google Scholar 

  127. G.A. Slack: New materials and performance limits for thermoelectric cooling, in: CRC Handbook on Thermoelectrics, edited by D.M. Rowe (CRC Press, 1994), pp. 407–440.

    Google Scholar 

  128. M.S. Dresselhaus, T. Koga, X. Sun, S.B. Cronin, K.L. Wang, G. Chen: Low dimensional thermoelectrics, in: Proceedings of the 16 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1997), pp. 12–20.

    Google Scholar 

  129. R. Venkatasubramanian, T. Colpitis: Enhancement in figure of merit with superlattice structures for thin film thermoelectric devices, in: Thermoelectric Materials - New Directions and Approaches, edited by T.M. Tritt, M.G. Kanatzidis, H.B. Lyon, G.D. Mahan (MRS, Pittsburgh, Pennsylvania, 1997), pp. 73–84.

    Google Scholar 

  130. M.C. Nicolaou: The magnesium silicide germanide stannide alloy: a new concept in thermoelectric energy conversion, in: Proceedings of the 4 th International Conference on Thermoelectrics (University of Texas at Arlington, Arlington, 1982), pp. 83–88.

    Google Scholar 

  131. H.T. Kaibe, Y. Noda, Y. Isoda, I.A. Nishida: Temperature dependence of thermal conductivity for Mg2Si1-xGex solid solution, in: Proceedings of the 16 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1997), pp. 279–282.

    Google Scholar 

  132. N.D. Marchuk, V.K. Zaitsev, M.I. Fedorov, A.E. Kalizin: Thermoelectric properties of some cheap n-type materials, in: Proceedings of the 8 th International Conference on Thermoelectrics (Inst. Nat. Polytechnique Lorraine, Nancy, 1989), p. 210.

    Google Scholar 

  133. T. Kajikawa, K. Shida, K. Shiraishi, T. Ito, M. Omori, T. Hirai: Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements, in: Proceedings of the 16 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1997) pp. 362–369.

    Google Scholar 

  134. M. Riffel, J. Schilz: Influence of production parameters on the thermoelectric properties of Mg2Si, in: Proceedings of the 16 th International Conference on Thermoelectrics (IEEE, Inc., Piscataway, NJ, 1997), pp. 283–286.

    Google Scholar 

  135. I. Ohsugi, T. Kojima, M. Sakata, I. Nishida: Anisotropic thermoelectricity of a CrSi2 single crystal, J. Jpn. Inst. Metals 58(9), 985–988 (1994).

    CAS  Google Scholar 

  136. F.A. Sidorenko, I.Z. Radovsky, I.P. Zelenin, P.V. Geld: Electrical and magnetic properties of solid solutions of vanadium and titanium disilicides in chromium disilicide, Proshkovaya Metallurgia 9, 67–74 (1966) (in Russian).

    Google Scholar 

  137. H. Hohl, A.P.Ramirez, T.T.M. Palstra, E. Bucher: Thermoelectric and magnetic properties of Cr!_xVxSi2 solid solutions, J. Alloys Comp. 248(1–2), 70–76 (1997).

    Article  CAS  Google Scholar 

  138. A.O. Avetisian, Yu.M. Gorachev, B.A. Kovenskaja, T.M. Armola: Electrophysical properties of alloys of chromium disilicide and highest manganese silicide, Dokl. Akad. Nauk Ukrain. SSR, Seria Fiziko-Matemat. Techn. Nauki (10), 64–67 (1980) (in Russian).

    Google Scholar 

  139. T. Ohkoshi, I. Nishida, K. Masumoto, H. Kaibe, Y. Isoda, S. Ishida: Slip casting and thermoelectric property of CrSi2, Trans. Jpn. Inst. Met. 29(9), 756–766 (1988).

    Google Scholar 

  140. J. Schumann, C. Gladun, J.-I. Moench, A. Heinrich, J. Thomas, W. Pitschke: Nanodispersed CrxSi1_x thin films: Transport properties and thermoelectric applications, Thin Solid Films 246(1–2), 24–29 (1994).

    Article  CAS  Google Scholar 

  141. B.K. Voronov, L.D. Dudkin, N.N. Trusovo: Anisotropy of thermoelectric properties in chromium and higher manganese silicide crystals, Kristallografia 12(3), 519–521 (1967).

    CAS  Google Scholar 

  142. A.T. Burkov, A. Heinrich, M.V. Verdernikov: Anisotropic thermoelectric materials: Properties and applications, in: Proceedings of the 13 th International Conference on Thermoelectrics (AIP Press, 1995), vol. 316, pp. 76–80.

    Google Scholar 

  143. E. Gross: Powder metallurgy of HMS and FeSi2 for the thermoelectric energy conversion, PhD Thesis (University of Karlsruhe, Germany, 1993) (in German).

    Google Scholar 

  144. M.V. Vedernikov, A.E. Engalychev, V.K. Zaitsev: Thermoelectric properties of materials based on the higher manganese silicide and cobalt monosilicide, in: Proceedings of the 7 th International Conference on Thermoelectrics (University of Texas at Arlington, Arlington, 1988), pp. 150–15.

    Google Scholar 

  145. E. Gross, M. Riffel, U. Stoehrer: Thermoelectric generators made of FeSi2 and HMS: Fabrication and measurement, J. Mater. Res. 10(1), 34–40 (1995).

    Article  CAS  Google Scholar 

  146. D.J.Bergman, O.Levy: Thermoelectric properties of a composite medium, J. Appl. Phys. 70(11), 6821–6833 (1991).

    Article  Google Scholar 

  147. A.T. Burkov, A. Heinrich, C. Gladun, W. Pitschke, J. Schumann: Effect of interphase boundaries on resistivity and thermopower of nanocrystalline Re-Si thin film composites, Phys. Rev. B 58, 9644–9647 (1998).

    Article  CAS  Google Scholar 

  148. C. Kleint, A. Heinrich, H. Griessmann, D. Hofmann, H. Vinzelberg, J. Schumann, D. Schlaefer, G. Behr, L. Ivanenko: Thermoelectric transport properties of ReS1.75 thin films, in: Thermoelectric Materials 1998 - The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, H.B. Lyon, Jr., G. Mahan, M.G. Kanatzidis (MRS, Pittsburgh, Pennsylvania, 1999).

    Google Scholar 

  149. R.M. Ware, D.J. McNeill: Iron disilicide as a thermoelectric generator material, Proc. IEE 111(1), 178–182 (1964).

    Google Scholar 

  150. I. Nishida: Study of semiconductor-to-metal transition in Mn-doped FeSi2, Phys. Rev. B 7(6), 2710–2713 (1973).

    Article  CAS  Google Scholar 

  151. Y. Isoda, T. Ohkoshi, I. Nishida, H. Kaibe: Si-composition and thermoelectric properties of Mn and Co doped FeSi2, J. Mater. Sci. Soc. Jpn. 25, 311–319 (1989).

    CAS  Google Scholar 

  152. U. Stöhrer, R. Voggesberger, G.Wagner, U. Birkholz: Sintered FeSi2 for thermoelectric power generation, Energy Convers. Mgmt. 30, 143–147 (1990).

    Article  Google Scholar 

  153. T. Tokiai, T. Uesugi, K. Koumoto: Thermoelectric properties of p-type iron disilicide ceramics fabricated from the composite powder prepared by the precipitation method, J. Ceram. Soc. Jpn. 103(7), 660–675 (1995).

    Google Scholar 

  154. H. Takizawa, P.F. Mo, T. Endo, M. Shimada: Preparation and thermoelectric properties of β-Fe1-rRuxSi2, J. Mater. Sci. 30(16), 4199–4203 (1995).

    Article  CAS  Google Scholar 

  155. A. Heinrich, G. Behr, H. Griessmann, S. Teichert, H. Lange: Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals, in: Thermoelectric Materials - New Directions and Approaches, edited by T.M. Tritt, M.G. Kanatzidis, H.B. Lyon, G.D. Mahan (MRS, Pittsburgh, Pennsylvania, 1997), pp. 255–266.

    Google Scholar 

  156. H.P. Geserich, S.K. Sharma, W.A. Theiner: Some structural, electrical and optical investigations on a new amorphous material: FeSi2, Philos. Mag. 27, 1001 (1973).

    Article  CAS  Google Scholar 

  157. J. Schumann, H. Griessmann, A. Heinrich: Doped β-FeSi2 thin film thermoelement sensor material, in: Proceedings of the 17 th International Conference on Thermoelectrics (IEEE, Inc., 1998), pp. 221–225

    Google Scholar 

  158. K. Matsubara, H. Kuno, Y. Okuno, H. Takaoka, T. Takagi: Thin film type thermoelectric devices using amorphous iron disilicide (FeSi2) prepared by ionized-cluster beam technique, Proc. Int. Ion Eng. Congr. 2, 1221–1226 (1983).

    CAS  Google Scholar 

  159. K. Matsubara, K. Kishimoto, K. Nagao, O. Ueda, T. Miki, T. Koyanagi, I. Fujii: Iron disilicides: The possibility of improving thermoelectric figure of merit values by RF-plasma processing, in: Proceedings of the 12 th International Conference on Thermoelectrics (Yokohama, 1993), pp. 223–230.

    Google Scholar 

  160. R. Kurt, W. Pitschke, A. Heinrich, H. Griessmann, J. Schumann, K. Wetzig: Effect of doping on the thermoelectric properties of iridium silicide thin films, in: Proceedings of the 17 th International Conference on Thermoelectrics (IEEE, Inc., Nagoya, 1998), pp. 249–252.

    Google Scholar 

  161. R.Kurt, W. Pitschke, A. Heinrich, J. Schumann, J. Thomas, K. Wetzig, A. Burkov: Phase formation process of IrxSi1-x thin films - structure and electrical properties, Thin Solid Films 310(1), 8–18 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanenko, L., Lange, H., Heinrich, A. (2000). Transport Properties. In: Semiconducting Silicides. Springer Series in Materials Science, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59649-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59649-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64069-8

  • Online ISBN: 978-3-642-59649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics