Skip to main content

Evolution of Vertebrate Immunoglobulin Variable Gene Segments

  • Chapter
Origin and Evolution of the Vertebrate Immune System

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 248))

Abstract

Immunoglobulins (Igs), also known as antibodies, play major roles in the verte- brate humoral immune system. They recognize and bind to foreign antigens, such as viruses, bacteria and parasites, and initiate a series of immunological responses (effector function). The dual function of the Ig protein is facilitated by its unique structure consisting of two functionally distinct domains, i.e., the variable (V) domain for antigen recognition and the constant (C) domain for effector function (Frazer and Capra 1998). Ig is generally composed of two identical heavy (IgH) and two identical light (IgL) chains, both of which contribute to the formation of V and C domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures and immunoglobulins. J Mol Biol 273: 927–948

    Article  PubMed  CAS  Google Scholar 

  • Alt F, Rosenberg N, Lewis S, Tomas E, Baltimore D (1981) Organization and reorganization of immunoglobulin genes in A-MuLV-transformed cells: rearrangement of heavy but not light chains genes. Cell 27: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Anderson MK, Schamblott MJ, Litman RT, Litman GW (1995) Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B-cell immunity. J Exp Med 182: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Arakawa H, Kuma K, Yasuda M, Furusawa S, Ekino S, Yamagishi H (1998) Oligoclonal development of B cells bearing discrete Ig chains in chicken single germinal centers. J Immunol 160: 4232–4241

    PubMed  CAS  Google Scholar 

  • Barré S, Greenberg AS, Flajnik MF, Chothia C (1994) Structural conservation of hypervariable regions in immunoglobulin evolution. Nat Struct Biol 1: 915–920

    Article  PubMed  Google Scholar 

  • Benatar T, Ratcliffe MJ (1993) Polymorphism of the functional immunoglobulin variable region genes in the chicken by exchange of sequence with donor pseudogenes. Eur J Immunol 23: 2448–2453

    Article  PubMed  CAS  Google Scholar 

  • Berek C (1998) Affinity Maturation. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 862–878

    Google Scholar 

  • Bernstein R, Schluter SF, Shen S, Marchalonis JJ (1996) A new high molecular weight immunoglobulin class from the carcharhine shark: implications for the properties of the primordial immunoglobulin. Proc Natl Acad Sci USA 93: 3289–3293

    Article  CAS  Google Scholar 

  • Blanden RJ, Steele EJ (1998) A unifying hypothesis for the molecular mechanism of somatic mutation and gene conversion in rearranged immunoglobulin variable genes. Immunol Cell Bio 76: 288–293

    Article  CAS  Google Scholar 

  • Brodeur PH, Riblet R (1984) The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred IgH-V gene comprise seven families of homologous genes. Eur J Immunol 14: 922–930

    Article  PubMed  CAS  Google Scholar 

  • Butler JE (1997) Immunoglobulin gene organization and the mechanism of repertoire development. Scand J Immunol 45: 455–462

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196: 901–917

    Article  PubMed  CAS  Google Scholar 

  • Chung GH, Scott MG, Kim KH, Kearnery J, Siber GR, Anbrosino DM, Nahm MH (1993) Clonal characterization of the human IgG antibody repertoire to Haemophilus infiuenzae type b polysaccharide. V. In vivo expression of individual antibody clones is independent on Ig CH haplotypes and the categories of antigen. J Immunol 151: 4352–4361

    PubMed  CAS  Google Scholar 

  • Coleclough C, Perry RP, Karjalaninen K, Weigert M (1981) Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290: 372–378

    Article  PubMed  CAS  Google Scholar 

  • Corbett S, Tomlinson I, Sonnhammer E, Buck D, Winter G (1997) Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “mirror” D segments or D-D recombination. J Mol Biol 271: 587–597

    Article  Google Scholar 

  • DeFranco AL (1998) B-lymphocyte activation. In: Paul WE (ed) Fundamental Immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 225–261

    Google Scholar 

  • Dufour LV, Malinge S, Nau F (1996) The sheep Ig variable region repertoire consists of a single VH family. J Immunol 156: 2163–2170

    PubMed  CAS  Google Scholar 

  • Du Pasquier L (1982) Antibody diversity in lower vertebrates–why is it so restricted? Nature 296: 311–313

    Article  PubMed  Google Scholar 

  • Du Pasquier L, Flajnik M (1998) Origin and evolution of the vertebrate immune system. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 605–650

    Google Scholar 

  • Feeney AJ, Atkinson MJ, Cowan MJ, Escuro G, Lugo G (1996) A defective VK A2 allele in Navajos which may play a role in increased susceptibility to Haemophilus inflauensae type b disease. J Clin Invest 97: 2277–2282

    Article  PubMed  CAS  Google Scholar 

  • Frazer JK, Capra JD (1998) Immunoglobulins: Structure and Function. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 37–74

    Google Scholar 

  • Frippiat JP, Williams SC, Tomlinson IM, Cook GP, Cherif D, Le-Paslier D, Colliins JE, Dunham I, Winter G, Lefranc MP (1995) Organization of the human immunoglobulin lambda light-chain locus on chromosome 22g11.2. Hum Mol Genet 4: 983–991

    Article  PubMed  CAS  Google Scholar 

  • Frippiat JP, Dard P, Marah S, Winter G, Lefranc MP (1997) Immunoglobulin lambda light chain orphans on human chromosome 8811.2. Eur J Immunol 27: 1260–1265

    Article  PubMed  CAS  Google Scholar 

  • Harding F, Amemiya CT, Litman RT, Cohen N, Litman GW (1990) Two distinct immunoglobulin heavy chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nuc Acids Res 18: 6369–6376

    Article  CAS  Google Scholar 

  • Hinds-Frey K, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178: 815–824

    Article  PubMed  CAS  Google Scholar 

  • Hohman VS, Schuchman DB, Schluter SF, Marchalonis JJ (1993) Genomic clone for sandbar shark X light chain: generation of diversity in the absence of gene rearrangement. Proc Natl Acad Sci USA 90: 9882–9886

    Article  PubMed  CAS  Google Scholar 

  • Hohman VS, Schlter SF, Machalonis JJ (1995) Diversity of Ig light chain clusters in the sandbar shark (Carcharhinus picanbeus). J Immunol 155: 3922–3928

    PubMed  CAS  Google Scholar 

  • Hsu E (1998) Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol Rev 162: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Ikematsu W, Harindranath N, Ueki Y, Notkins AL, Casali P (1993) Clonal analysis of human antibody response. II. Sequence of the VH genes of human 1gM, IgG, and IgA to rabies virus reveal preferential utilization of VH3 segments and somatic hypermutation. J Immunol 150: 1325–1337

    PubMed  CAS  Google Scholar 

  • Ikematsu W, Kobarg J, Ikematsu H, Ichiyoshi Y, Casali P (1998) Clonal analysis of a human antibody response. III. Nucleotide sequences of monoclonal IgM, IgG, and IgA to rabies virus reveal restricted V„ gene utilization, junctional V,-J„_ and VxJx diversity, and somatic hypermutation. J Immunol 161: 2895–2905

    PubMed  CAS  Google Scholar 

  • Jeurissen SH, Janse EM, van Rooijen N, Claassen E (1998) Inadequate anti-polysaccharide antibody responses in the chicken. Immunobiol 198: 385–395

    CAS  Google Scholar 

  • Jolly C, Wagner SD, Rada C, Klix N, Milstein C, Neuberger MS (1996) The target of somatic mutation. Seminar Immunol 8: 159–168

    Article  CAS  Google Scholar 

  • Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL, Wang J, Shimizu N (1997) One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res 7: 250–261

    Article  PubMed  CAS  Google Scholar 

  • Kepler TB (1997) Codon bias and plasticity in immunoglobulins. Mol Biol Evol 14: 637–643

    PubMed  CAS  Google Scholar 

  • Kirkham PM, Mortani F, Newton JA, Schroeder HW Jr (1992) Immunoglobulin VH clan and family identity predicts variable domain structure and may influences antigen binding. EMBO J 11: 603–609

    PubMed  CAS  Google Scholar 

  • Knight LK (1992) Restricted VH gene usage and generation of antibody diversity in rabbit. Ann Rev Immunol 10: 593–616

    Article  CAS  Google Scholar 

  • Knight LK, Winstead CR (1997) Generation of antibody diversity in rabbits. Curr Opin Immunol 9: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Kokubu F, Litman R, Shamblott MJ, Hinds K, Litman GW (1988a) Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 7: 3413–3422

    PubMed  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1988b) Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7: 1979–1988

    PubMed  CAS  Google Scholar 

  • Li WH, Sadler LA (1991) Low nucleotide diversity in man. Genetics 129: 513–523

    PubMed  CAS  Google Scholar 

  • Litman GW, Rast JP, Schamblott MJ, Haire RN, Hulst M, Roess W, Litman RT, Hinds-Frey KR, Zilch A, Amemiya CT (1993) Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol 10: 60–72

    PubMed  CAS  Google Scholar 

  • Lopez O, Perez C, Wylie D (1998) A single VH family and long CDRs are the target for hypermutation in bovine immunoglobulin heavy chains. Immunol Rev 162: 5. 5–66

    Google Scholar 

  • Lucier MR, Thompson RE, Waire J, Lin AW, Osborne BA, Goldsby RA (1998) Multiple sites of V7,, diversification in cattle. J Immunol 161: 5438–5444

    PubMed  CAS  Google Scholar 

  • Lundqvist M, Bengtén E, Strömberg S, Pilström L (1996) Ig light chain gene in the Siberian sturgeon (Acipenser barri): implications for the evolution of the immune system. J Immunol 157: 2031–2038

    PubMed  CAS  Google Scholar 

  • Machalonis JJ, Schluter SF, Bernstein RM, Shen S, Edmundson AB (1998) Phylogenetic emergence and molecular evolution of the immunoglobulin family. Adv Immunol 70: 417–506

    Article  Google Scholar 

  • Mansikka A, Toivanen P (1991) D-D recombination diversifies the CDR 3 region of chicken immunoglobulin heavy chains. Scand J Immunol 33: 543–548

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Honjo T (1996) Organization of the human immunoglobulin heavy chain locus. Adv Immunol 62: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H, Miyata T, Honjo T (1998) The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 188: 2151–2162

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Andersson E (1997) Analysis of VH gene diversity in rainbow trout (Oncorhynchus mykiss): both nonsynonymous and synonymous nucleotide changes are more frequent in CDRs than in FRs. Immunogenetics 45: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Max EE (1998) Immunoglobulins: Molecular Genetics. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 111–182

    Google Scholar 

  • McCormack WT, Tjoelker LW, Thompson CB (1991) Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. Annu Rev Immunol 9: 219–241

    Article  PubMed  CAS  Google Scholar 

  • McCormack WT, Hurley EA, Thompson CB (1993) Germ line maintenance of the pseudogene donor pool for somatic immunoglobulin gene conversion in chickens. Mol Cell Biol 13: 821–830

    PubMed  CAS  Google Scholar 

  • Melcher F, Rolink A (1998) B-lymphocyte development and biology. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 183–224

    Google Scholar 

  • Michael N, Accavitti MA, Masteller E, Thompson CB (1998) The antigen-binding characteristics of mAbs derived from in vivo priming of avian B-cells. Proc Natl Acad Sci USA 95: 1166–1171

    Article  PubMed  CAS  Google Scholar 

  • Miller RD, Grade H, Resenberg GH (1998) VH repertoire of a marsupial (Mondelphis domestica). J Immunol 160: 259–265

    PubMed  CAS  Google Scholar 

  • Mond JJ, Lees A, Snapper CM (1995) T-cell independent antigens type 2. Ann Rev Immunol 13: 655–692

    Article  CAS  Google Scholar 

  • Nadel B, Tang A, Lugo G, Love V, Escuro G, Feeney AJ (1998) Decreased frequency of rearrangement due to the synergistic effect of nucleotide changes in the heptamer and nonamer of the recombination signal sequence of the VK gene Alb, which is associated with increased susceptibility of Navajos to Haemophilus influenza Type b disease. J Immunol 161: 6068–6073

    PubMed  CAS  Google Scholar 

  • Nagaoka H, Ozawa K, Matsuda F, Hayashida H, Matsumura R, Haino M, Shin EK, Fukita Y, Imai T, Anand R, Yokoyama K, Eki T, Soeda E, Honjo T (1994) Recent translocation of variable and diversity segments of the human immunoglobulin heavy chain from chromosome 14 to chromosome 15 and 16. Genomics 22: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94: 7799–7806

    Article  PubMed  CAS  Google Scholar 

  • Ota T (1997) Molecular evolution of immunoglobulin VH segments. In: Herzenberg LA, Weir DM, Herzenberg LA, Blackwell C (eds) Weir’s handbook of experimental immunology, 5th edn., vol. 1: immunochemistry and molecular immunology. Blackwell Scientific Press, Oxford, pp 8.1–8. 8

    Google Scholar 

  • Ota T, Nei M (1994) Divergent evolution and evolution by the birth and death process in the immunoglobulin VH gene family. Mol Biol Evol 11: 469–482

    PubMed  CAS  Google Scholar 

  • Ota T, Nei M (1995) Evolution of immunoglobulin VH pseudogenes in chickens. Mol Biol Evol 12: 94 102

    Google Scholar 

  • Ota T, Margittai M, Rast JP, Litman RT, Litman GW, Amemiya CT (1995) Studies of the early evolution of immunoglobulin genes. In: Nei M, Takahata N (eds) Current topics of molecular evolution. The Pennsylvania State University, University Park

    Google Scholar 

  • Pargent W, Schäble KF, Zachau HG (1991) Polymorphism and haplotypes in the human immunoglobulin x locus. Eur J Immunol 21: 1829–1835

    Article  PubMed  CAS  Google Scholar 

  • Parng CL, Hansal S, Goldsby RA, Osborne BA (1996) Gene conversion contributes to Ig light chain diversity in cattle. J Immunol 157: 5478–5486

    PubMed  CAS  Google Scholar 

  • Parvari R, Ziv E, Lantner F, Heller D, Schechter I (1990) Somatic diversification of chicken immunoglobulin light chains by point mutations. Proc Natl Acad Sci USA 87: 3072–3076

    Article  PubMed  CAS  Google Scholar 

  • Pastula S, Schwager J, Timmusk S, Pilström L, Charlemagne J (1996) A second immunoglobulin light chain isotype in the rainbow trout. Immunogenetics 45: 44 51

    Google Scholar 

  • Picker LJ, Siegelman MH (1998) Lymphoid tissue and organ. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia, pp 479–531

    Google Scholar 

  • Queiroz RG, Carrier A, Victorero G, Jordan B, Passos GA Jr (1997) Chromosomal location of the human immunoglobulin lambda variable 8 (IGLV8) gene family outside the major lambda locus on chromosome 22gI1.2. Immunol Lett 59: 177–180

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization on a divergent lineage of chondrichthyan fishes. Immunogenetics 47: 234–245

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Anderson MK, Ota T, Litman R, Margittai M, Schamblott MJ, Litman GW (1994) Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics. 40: 83–99

    Article  PubMed  CAS  Google Scholar 

  • Ravetch JV, Siebenlist U, Korsmeyer SJ, Waldmann T, Leder P (1981) Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell 27: 583–591

    CAS  Google Scholar 

  • Reynaud CA, Anquez V, Grimal H, Weill JC (1987) A hyperconversion mechanism generates the chicken light chain pre-immune repertoire. Cell 48: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Dahan A, Anquez V, Weill JC (1989) Somatic hyperconversion diversifies the single VH gene of the chicken with a high incidence in the D region. Cell 59: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Mackay CR, Müller RG, Weill JC (1991) Somatic generation of diversity in mammalian primary lymphoid organ: the sheep Beal Peyer’s patches. Cell 64: 995–1005

    Article  PubMed  CAS  Google Scholar 

  • Reynaud CA, Bertocci B. Dahan A, Weill JC (1994) Formation of the chicken B-cell repertoire: onto-genesis, regulation of Ig gene rearrangement, and diversification by gene conversion. Adv Immunol 57: 353–378

    Article  PubMed  CAS  Google Scholar 

  • Roman T, Andersson E, Bengtén E, Hansen J, Kaattari S, Pilström L, Charlemage J, Matsunaga T (1996) Unified nomenclature of Ig VH genes in rainbow trout (Oncorhvnclws m,tkiss): definition of eleven VH families. Immunogenetics 43: 325–326

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1986) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    Google Scholar 

  • Schäble KF, Zachau HG (1993) The variable genes of the human immunoglobulin k locus. Biol Chem Hoppe Seyer 374: 1001–1022

    Article  Google Scholar 

  • Schaible G, Rappold GA, Pargent W, Zachau HG (1993) The immunoglobulin kappa locus: polymorphism and haplotypes of Caucasoid and non-Caucasoid individuals. Hum Genet 91: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HW Jr, Hillson JL, Permutter RM (1990) Structure and evolution of mammalian VH families. Int Immunol 20: 41–50

    Article  Google Scholar 

  • Scott MG, Nahm MH (1992) Characterization of the human IgG antibody VL repertoire to Haemop/uilus influenza type b polysaccharide. J Infect Dis 65: 553–556

    Google Scholar 

  • Scott MG, Tarrand JJ, Crimmins DL, McCourt DW, Siegel NR, Smith CE, Nahm MH (1989) Clonal characterization of the human IgG antibody repertoire to H. influenza type b polysaccharide. II. IgG antibodies contain VH genes from a single VH gene family and VL genes from at least four VL gene families. J Immunol 143: 292–298

    Google Scholar 

  • Shen SX, Bernstein RM, Schluter SF, Marchalonis JJ (1996) Heavy-chain variable regions in carcharhine sharks: development of a comprehensive model for the evolution of VH domains among the gnathanstomes. Immunol Cell Biol 74: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Sitnikova T, Nei M (1998) Evolution of immunoglobulin kappa chain variable region genes in vertebrates. Mol Biol Evol 15: 50–60

    PubMed  CAS  Google Scholar 

  • Sitnikova T, Su C (1998) Coevolution of immunoglobulin heavy-and light-chain variable region gene families. Mol Biol Evol 15: 617–626

    PubMed  CAS  Google Scholar 

  • Sun J, Kackovics I, Brown WR, Butler JE (1994) Expressed swine VH genes belong to a small VH gene family homologous to human VHIII. J Immunol 153: 5618–5627

    PubMed  CAS  Google Scholar 

  • Tanaka T, Nei M (1989) Positive Darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol 6: 447–459

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson IM, Cook GP (1997) Human immunoglobulin variable region genes. In: Herzenberg LA, Weir DM, Herzenberg LA, Blackwell C (eds) Weir’s handbook of experimental immunology, 5th edn., vol. 1. Immunochemistry and molecular immunology. Blackwell Scientific Press, Oxford, pp 4.1–4. 8

    Google Scholar 

  • Tomlinson IM, Cook GP, Carter NP, Elaswarapu R, Smith S, Walter G, Buluwela L. Rabbitts TH, Winter G (1994) Human immunoglobulin VH and D segments on chromosomes 15811.2 and 16p11.2. Hum Mol Genet 3: 853–860

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson IM, Williams SC, Ignatovich O, Corbett SJ, Winter G (1996a) VBASE sequence directory. MRC Center for Protein Engineering, Cambridge

    Google Scholar 

  • Tomlinson IM, Waler G, Jones PT, Dear PH, Sonnhammer ELL, Winter G (1996b) The imprint of somatic hypermutation on the repertoire of human germline V genes. J Mol Biol 256: 813–817

    Article  PubMed  CAS  Google Scholar 

  • Tutter A, Riblet R (1989) Conservation of an immunoglobulin variable-region gene family indicates a specific, noncoding function. Proc Natl Acâd Sci USA 86: 7460–7464

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Madrazro E, Lara-Ochoa F, Almagro JC (1995) Canonical structure repertoire of the antigen-binding site of immunoglobulins suggests strong geometrical restrictions associated to the mechanism of immune recognition. J Mol Biol 254: 497–504

    Article  Google Scholar 

  • Vargas-Madrazo E, Lara-Ochoa F, Ramirez-benites M, Almagro JC (1997) Evolution of the structural repertoire of the human VH and Vk germline genes. Int Immunol 9: 1801–1815

    Article  PubMed  CAS  Google Scholar 

  • Webster DM, Henry AH, Rees AR (1994) Antibody-antigen interactions. Curr Opin Struct Biol 4: 123–129

    Article  CAS  Google Scholar 

  • Williams SC, Frippiat JP, Tomlinson IM, Ignatovich O, Lefranc MP, Winter G (1996) Sequence and evolution of the human germline V. repertoire. J Mol Biol 264: 220–232

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Hsu E, Marcuz A, Courtet M, Du Pascuier L, Steinberg C (1992) What limits affinity maturation of antibodies in Xenopus — the rate of somatic mutation or the ability to select mutants? EMBO J 11: 4337–4347

    PubMed  CAS  Google Scholar 

  • Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132: 211–250

    Article  PubMed  CAS  Google Scholar 

  • Zachau HG (1995) The human immunoglobulin is genes. In: Honjo T, Alt F (eds) Immunoglobulin genes. 2nd Edn. Academic Press, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ota, T., Sitnikova, T., Nei, M. (2000). Evolution of Vertebrate Immunoglobulin Variable Gene Segments. In: Du Pasquier, L., Litman, G.W. (eds) Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology and Immunology, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59674-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59674-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64078-0

  • Online ISBN: 978-3-642-59674-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics