Skip to main content

Microscopic Simulation of Congested Traffic

  • Conference paper
Traffic and Granular Flow ’99

Abstract

We present simulations of congested traffic in open systems with a new carfollowing model. The model parameters are all intuitive and can be easily calibrated. Microsimulations with identical vehicles on a single lane produce the same traffic states as recent macrosimulations of open systems with on-ramps, which also qualitatively agree with real traffic data. The phase diagram in the phase space spanned by the traffic flow and the bottleneck strength is nearly equivalent to the macroscopic phase diagram. In agreement with macroscopic models, we found hysteresis, coexistent states, and a small region of tristability. We simulated the process of obtaining time-averaged traffic data by “virtual detectors”. While for identical vehicles, the resulting flow-density data do not look very realistic, microsimulations of heterogeneous (multi-species) traffic offer a natural explanation of the observed wide scattering of congested traffic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Reuschel, Fahrzeugbewegungen in der Kolonne, Österr. Ingenieur-Archiv 4, 193–215 (1950).

    MATH  Google Scholar 

  2. G.F. Newell, Nonlinear effects in the dynamics of car following, Op. Res. 9, 209 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E 51, 1035–1042 (1995).

    Article  Google Scholar 

  4. P.G.A. Gipps, Behavioural car-following model for computer simulation, Trans. Res. B 15, 105–111 (1981).

    Article  Google Scholar 

  5. S. Kraufl, Microscopic Modelling of Traffic Flow, FB 98–08, (DLR, Cologne, 1998).

    Google Scholar 

  6. D. Helbing and B. Tilch, Generalized force model of traffic dynamics, Phys. Rev. E 58, 133–138 (1998).

    Article  Google Scholar 

  7. R. Wiedemann, Simulation des Straflenverkehrsflusses, (Institut für Verkehrswesen, Universität Karlsruhe, 1974).

    Google Scholar 

  8. See internet page http://hippo.mit.edu/products/mitsim/main.html.

    Google Scholar 

  9. H.Y. Lee, H.W. Lee, and D. Kim, Empirical phase diagram of congested traffic flow, preprint, cond-mat/9905292.

    Google Scholar 

  10. B.S. Kerner and H. Rehborn, Experimental properties of complexity in traffic flow, Phys. Rev. E 53, R4275–R4278 (1996).

    Article  Google Scholar 

  11. J. Treiterer and J.A. Myers, The hysteresis phenomenon in traffic flow, in: Proc. 6th Int. Symp. on Transportation and Traffic Theory, D.J. Buckley, (ed.), pp. 13 (Elsevier, New York, 1974).

    Google Scholar 

  12. C.F. Daganzo, M.J.Cassidy, and R.L. Bertini, Some traffic features at freeway bottlenecks, Trans. Res. B 33, 25–42 (1999).

    Article  Google Scholar 

  13. B.S. Kerner, The physics of traffic, Physics World, Aug., 25-30 (1999).

    Google Scholar 

  14. B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E 50, 54–83 (1994).

    Article  Google Scholar 

  15. M. Treiber and D. Helbing, Explanation of observed features of self-organization in traffic flow, preprint, cond-mat/9901239.

    Google Scholar 

  16. D. Helbing, A. Hennecke, and M. Treiber, Phase diagram of traffic states in the presence of inhomogeneities, Phys. Rev. Lett. 82, 4360–4363 (1999).

    Article  Google Scholar 

  17. M. Treiber, A. Hennecke, and D. Helbing, Derivation, properties, and simulation of a gas-kinetic-based, non-local traffic model, Phys. Rev. E 59, 239–253 (1999).

    Article  Google Scholar 

  18. H.Y. Lee, H.W. Lee, and D. Kim, Origin of synchronized traffic flow on highways and its dynamic phase transition, Phys. Rev. Lett. 81, 1130–1133 (1998).

    Article  Google Scholar 

  19. A. Hennecke, M. Treiber, and D. Helbing, Macroscopic simulation of open systems and micro-macro link, in this volume.

    Google Scholar 

  20. M. Treiber and D. Helbing, Macroscopic simulation of widely scattered synchronized traffic states, J. Phys. A 32, L17–L23 (1999).

    Article  Google Scholar 

  21. Interactive simulations of the multi-lane IDM axe available at http://www.uni-stuttgart.de/treiber/MicroApplet/.

    Google Scholar 

  22. R. Sollacher and H. Lenz, Nonlinear control of stop-and-go traffic, in this volume.

    Google Scholar 

  23. D. Helbing and B.A. Huberman, Coherent moving states in highway traffic, Nature 396, 738–740 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Treiber, M., Hennecke, A., Helbing, D. (2000). Microscopic Simulation of Congested Traffic. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics