Skip to main content

The Use of a Memory-Shape Staple in Cervical Anterior Fusion (about 100 Human Implantations)

  • Chapter
Shape Memory Implants

Abstract

This study will present one application of nickel-titanium shape-memory staple in spinal surgery. Clinical and radiological results based on 100 human anterior cervical spine implantations will be reported. These cervical fusions have been performed as described by Smith and Robinson [25], and were stabilized with a NiTi shape memory staple producing a dynamic compression effect on the bone graft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assad M, Lombardi S, Berneches S, Desrosier EA, Yahia LH, Rivard CH (1994) Assays of cytotoxicity of the nickel-titanium shape memory alloy. Ann Chir 48:731–736

    PubMed  CAS  Google Scholar 

  2. Assad M, Yahia LH, Rivard CH, Lemieux N (1998) In vitro biocompatibility assessment of a nickeltitanium alloy using electron microscopy in situ end-labeling (EM-ISEL). J Biomed Mater Res 41:154–161

    Article  PubMed  CAS  Google Scholar 

  3. Bailey RW, Badyley CE (1960) Stabilization of the cervical spine by anterior fusion. J Bone Joint Surg Am 42:565–594

    PubMed  Google Scholar 

  4. Bohler J, Gaudermerk (1980) Anterior plate stabilization for fracture dislocations of the lower cervical spine. J Trauma 20:203–205

    Article  PubMed  CAS  Google Scholar 

  5. Buehler WJ, Wang FE (1967) A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Ocean Eng 1:851–859

    Google Scholar 

  6. Caspar W, Barbier DD, Klara PM (1989) Anterior cervical fusion and Caspar plate stabilization for cervical trauma. Neurosurgery 25:491–502

    Article  PubMed  CAS  Google Scholar 

  7. Castelman LS, Motzkin SM (1981) The biocompatibility of Nitinol. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol 1. CRC Press, Inc., Boca Raton, Florida pp 129–154

    Google Scholar 

  8. Cloward RB (1958) The anterior approach for removal of ruptured cervical discs. J Neurosurg 15:602–617

    Article  PubMed  CAS  Google Scholar 

  9. Dotter CT, Buschmann RW, McKinney MK, Rosch J (1983) Transluminal expandable nitinol coil stent grafting: prelimenary report. Radiology 147:259–260

    PubMed  CAS  Google Scholar 

  10. Drugacz J, Lekston Z, Morawiec H, Januszewski K (1995) Use of TiNiCo shape-memory clamps in the surgical treatment of mandibular fractures. J Oral Maxillofac Surg 53:665–671

    Article  PubMed  CAS  Google Scholar 

  11. Endo K, Sachdeva R, Araki Y, Ohno H (1994) Effects of titanium nitride coatings on surface and corrosion characteristics of NiTi alloy. Dent Mater J 13:228–239

    PubMed  CAS  Google Scholar 

  12. Gassman J, Seligson D (1981) The anterior cervical plate. Spine 7:700–707

    Google Scholar 

  13. Goodman J, Seligson D (1983) The anterior cervical plate. Spine 8:700–7067

    Article  Google Scholar 

  14. Kostuick JP, Conolly PJ, Esses SI, Suh P (1993) Anterior cervical plate fixation with the titanium hollow screw plate system. Spine 18:1273–1278

    Article  Google Scholar 

  15. McAfee PC, Bohlman HH (1989) One stage anterior cervical decompression and posterior stabilization with circumferential arthrodesis. J Bone Joint Surg A 71:78–88

    CAS  Google Scholar 

  16. Mei F, Ren X, Wang W (1997) The biomechanical effect and clinical application of a NiTi shape memory expansion clamp. Spine 22:2083–2088

    Article  PubMed  CAS  Google Scholar 

  17. Morscher E, Sutter F, Jennis M, Olerud S (1986) Die Vordere Verplattung der halswirbelsaule mit dem hohischrauben plattensystem. Chirurgie 57:702–707

    CAS  Google Scholar 

  18. Odom GL, Finney W, Woodhall B (1958) Cervical disc lesions. JAMA 166:23–28

    CAS  Google Scholar 

  19. Otsuka K, Wayman CM (1998) Mechanism of shape memory effect and superelasticity. In: Otsuka K, Wayman CM (eds) Shape-memory materials. Cambridge University, Cambridge, pp 27–48

    Google Scholar 

  20. Ricart O (1997) The use of a memory shape staple in cervical anterior fusion. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 623–626

    Google Scholar 

  21. Ryhanen J, Raatikainen T, Kaarela O (1998) Complete acromioclavicular dislocation repair with a new shape memory AC-hook implant and operative technique and prospective pilot study. In: Proceedings of 7th international congress on surgery of the shoulder, Sydney, Australia, p 292

    Google Scholar 

  22. Ryhanen J (1999) Biocompatibility evaluation of nickel-titanium shape memory metal alloy. Acta Univ Ouluensis

    Google Scholar 

  23. Sanders JO, Sanders AE, More R, Ashman RB (1993) A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine 18:1640–1646

    Article  PubMed  CAS  Google Scholar 

  24. Silberstein B (1997) Subtotal and total vertebral body replacement and interbody fusion with porous Ti-Ni implants. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 617–621

    Google Scholar 

  25. Smith GW, Robinson RA (1958) The treatment of cervical spine disease by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40:604–624

    Google Scholar 

  26. Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL (1998) Effect of modification of oxyde layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433–440

    Article  PubMed  CAS  Google Scholar 

  27. VanHumbeeck J, Stalmans R (1998) Characyeristics of shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University, Cambridge, pp 49–83

    Google Scholar 

  28. Villermaux F, Tabrizian M, Rhalmi S, Rivard C, Meunier M, Czeremuszkin G, Piron DL, Yahia LH (1997) Cytocompatibility of NiTi shape memory alloy biomaterials. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 417–422

    Google Scholar 

  29. White AA III, Jupiter J, Southwick WO, Panjabi MM (1973) An experimental study of the immediate load bearing capacity of three surgical constructions for anterior spine fusions. Clin Orthop 91:21–28

    Article  PubMed  Google Scholar 

  30. Younger WM, Chapman MW (1989) Morbidity at bone graft donor site. J Orthop Trauma 3:192–195

    Article  PubMed  CAS  Google Scholar 

  31. Zdeblick TA, Cooke ME, Wilson D, Kunz DN, McCabe R (1993) Anterior cervical discetomy, fusion and plating. A comparative animal study.Spine 18:1974–1983

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ricart, O. (2000). The Use of a Memory-Shape Staple in Cervical Anterior Fusion (about 100 Human Implantations). In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics