Skip to main content

Abstract

Conscious control of action involves the voluntary initiation and the continuous adjustment of motor activity. Neuroimaging data provide evidence that the plan for a movement is developed with respect to the behavioral context in prefrontal cortex, while the synergies of a motor program are coded by premotor cortex and the specific movement parameters by the motor cortex. It is suggested that the initiational aspects of conscious motor activity are implemented in a medial system of information flow and the integrative aspects in a lateral system of the human frontal lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1006

    PubMed  CAS  Google Scholar 

  • Binkofski F, Seitz RJ, Arnold S, Claßen J, Benecke R, Freund H-J (1996) Thalamic metabolism and integrity of the pyramidal tract determine motor recovery in stroke. Ann Neurol 39:460–470

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H-J (1999) A fronto-parietal circuit for object manipulation in man. Evidence from an fMRI-study. Eur J Neurosci 11:3276–3286

    Article  PubMed  CAS  Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92:11180–11184

    Article  PubMed  CAS  Google Scholar 

  • Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13:5105–5118

    PubMed  CAS  Google Scholar 

  • Brinkman C (1984) Supplementary motor area of the monkey’s cerebral cortex: short- and long-term deficits after unilateral ablation and the effects of subsequent callosal sections. J Neurosci 4:918–929

    PubMed  CAS  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and online monitoring of performance. Science 280:747–749

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84:392–402

    Article  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D (1997) Functional MRI studies of spatial and non-spatial working memory. Cogn Brain Res 7:1–13

    Article  Google Scholar 

  • Devinsky O, Morrell M J, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projection from the premotor areas in the frontal lobe. J Neurosci 11:667–689

    PubMed  CAS  Google Scholar 

  • Duncan J, Owen A (2000) Dissociative methods in the study of frontal lobe function. In: Monsell S, Driver J (eds) Attention and performance XVIII. MIT Press, Cambridge (in press)

    Google Scholar 

  • Feinberg TE, Schindler RJ, Flanagan NG, Haber LD (1992) The alien hand syndrome. Neurology 42:19–24

    PubMed  CAS  Google Scholar 

  • Fink GR, Marshall JC, Halligan PW, Frith CD, Driver J, Frackowiak RSJ, Dolan RJ (1999) The neural consequences of conflict between intention and the senses. Brain 122:497–512

    Article  PubMed  Google Scholar 

  • Flament D, Ellermann JM, Kim S-G, Ugurbil K, Ebner TJ (1996) Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Map 4:210–226

    Article  CAS  Google Scholar 

  • Fogassi L, Gallese V, Pellegrino G di (1992) Space coding by premotor cortex. Exp Brain Res 89:686–690

    Article  PubMed  CAS  Google Scholar 

  • Foerster O (1936) Motorische Felder und Bahnen. In: Bumke O, Foerster O (eds) Handbuch Neurology, Vol 6. Allgemeine Neurologie. Springer, Berlin, pp 1–357

    Google Scholar 

  • Freund H-J, Hummelsheim H (1985) Lesions of premotor cortex in man. Brain 108:697–733

    Article  PubMed  Google Scholar 

  • Friederici AD (1997) Autonomy of syntactic processing and the role of Broca’s area. Behav Brain Sci 19:634–635

    Article  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Fuster JM (1993) Frontal lobes. Curr Opin Neurobiol 3:160–165

    Article  PubMed  CAS  Google Scholar 

  • Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gaymard B, Rivaud S, Pierrot-Deseilligny C (1993) Role of the left and right supplementary motor areas in memory-guided saccade sequences. Ann Neurol 34:404–406

    Article  PubMed  CAS  Google Scholar 

  • George MS, Ketter TA, Parekh PI, Rosinsky N, Ring H, Casey BJ, Trimble MR, Horwitz B, Herscovitch P, Post RM (1994) Regional brain activity when selecting a response despite interference: an H2 150 PET study of the Stroop and an emotional Stroop. Hum Brain Map 1:194–209

    Article  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Ashe J, Smyrnis N, Taira M (1992) The motor cortex and the coding of force. Science 256:1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Taira M, Lukashin A (1993) Cognitive neurophysiology of the motor cortex. Science 260:47–52

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71:475–490

    Article  PubMed  CAS  Google Scholar 

  • Godschalk M, Lemon RN, Kuypers HGJM, Ronday HK (1984) Cortical afférents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp Brain Res 56:410–424

    Article  PubMed  CAS  Google Scholar 

  • Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Goel V, Grafman J, Tajik J, Gana S, Danto D (1997) A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120:1805–1822

    Article  PubMed  Google Scholar 

  • Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6:226–237

    Article  PubMed  CAS  Google Scholar 

  • Halsband U, Freund H-J (1990) Premotor cortex and conditional motor learning in man. Brain 113:207–222

    Article  PubMed  Google Scholar 

  • He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    PubMed  CAS  Google Scholar 

  • Heide W, Binkofski F, Posse S, Seitz RJ, Kömpf D, Freund H-J (1999) Cortical control of sequences of memory guided saccades. In: Becker W, Deubel H, Mergner T (eds) Current oculomotor research — physiological and psychological aspects. Plenum Press, New York, pp 223–233

    Google Scholar 

  • Heilman KM, Bowers D, Coslett B, Whelan H, Watson RT (1985) Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemispheric lesions and neglect. Neurology 35:855–859

    PubMed  CAS  Google Scholar 

  • Herzog H, Seitz RJ, Tellmann L, Müller-Gartner H-W (1996) Quantification of regional cerebral blood flow with l5O-but-anol and positron emission tomography in humans. J Cereb Blood Flow Metab 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Hummelsheim H, Bianchetti M, Wiesendanger M, Wiesendanger R (1988) Sensory inputs to the agranular motor fields: a comparison between precentral, supplementary-motor and premotor areas in the monkey. Exp Brain Res 69:289–298

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Jenkins H, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118:913–933

    Article  PubMed  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanism of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    PubMed  CAS  Google Scholar 

  • Kawashima R, Roland PE, O’Sullivan BT (1994) Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci 14:3462–3474

    PubMed  CAS  Google Scholar 

  • Keizer K, Kuypers HGJM (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74:311–318

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Nitschke MF, Frahm J (1997) Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci 9:2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Kozennikow O, Wicki U, Corboz M (1994) Temporal structure of a bimanual goal-directed movement sequence in monkeys. Eur J Neurosci 6:203–210

    Article  Google Scholar 

  • Kurata K, Wise SP (1988) Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally and internally instructed motor tasks. Exp Brain Res 72:237–248

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Obrig H, Lindinger G (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79:504–514

    Article  PubMed  CAS  Google Scholar 

  • Luppino G, Matelli M, Rizzolatti G (1990) Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex. Exp Brain Res 82:214–218

    Article  PubMed  CAS  Google Scholar 

  • Luppino G, Matelli M, Camarda RM (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortial microstimulation study in the macaque monkey. J Comp Neurol 311:463–482

    Article  PubMed  CAS  Google Scholar 

  • Mai N, Bolsinger P, Averello M, Diener H-C, Dichgans J (1988) Control of isometric finger force in patients with cerebellar disease. Brain 111:973–998

    Article  PubMed  Google Scholar 

  • Massion J, Viallet F, Massarino R, Khalil R (1989) La région de l’aire motrice supplémentaire est impliquée dans la coordination entre posture et mouvement chez l’Homme. CR Acad Sci [III] 308:417–423

    CAS  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  PubMed  CAS  Google Scholar 

  • Mclnthosh AR, Rajah MN, Lobaugh NJ (1999) Interactions of prefrontal cortex in relation to awareness in sensory learning. Science 284:1531–1533

    Article  Google Scholar 

  • Menon RS, Kim S-G (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216

    Article  PubMed  Google Scholar 

  • Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3:950–957

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–104

    Article  PubMed  CAS  Google Scholar 

  • Pardo JV, Fox PT, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop at-tentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glaas T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino G di, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci 13:1227–1243

    PubMed  Google Scholar 

  • Pendlebury ST, Blamire AM, Lee MA, Style P, Matthews PM (1999) Axonal injury in the internal capsule correlates with motor impairment after stroke. Stroke 30:956–962

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia — thalamocortical system and cingulate cortex involvement. J Neurophysiol 69:1009–1017

    PubMed  CAS  Google Scholar 

  • Rao SR, Rainer G, Miller EK (1997a) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997b) Distributed neural systems underlying the timing of movements. J Neurosci 15:5528–5535

    Google Scholar 

  • Rauch SL, Savage CR, Brown HD, Curran T, Alpert NM, Kendrick A, Fischman AJ, Kosslyn SM (1995) A PET investigation of implicit and explicit sequence learning. Hum Brain Map 3:271–286

    Article  Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L (1988) Functional organization of inferior area 6 in the macaque monkey. IL Area F5 and the control of distal movements. Exp Brain Res 71:491–507

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Gentilucci M, Camarda R (1990) Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6aß). Exp Brain Res 82:337–350

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 15:9667–9674

    Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840

    PubMed  CAS  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–1777

    Article  PubMed  CAS  Google Scholar 

  • Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area? Science 261:489–492

    Article  PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1987) Evidence for a supplementary eye field. J Neurophysiol 57:179–200

    PubMed  CAS  Google Scholar 

  • Seitz RJ, Roland PE (1992a) Learning of finger movement sequences: a combined kinematic and positron emission tomography study. Eur J Neurosci 4:154–165

    Article  PubMed  Google Scholar 

  • Seitz RJ, Roland PE (1992b) Variability of the rCBF measured with [11C]-fluoromethane and positron emission tomography (PET) in rest. Comp Med Imag Graph 5:311–322

    Article  Google Scholar 

  • Seitz RJ, Canavan AGM, Yagüez L, Herzog H, Tellmann L, Knorr U, Huang Y, Hömberg V (1997) Representation of graphomotor trajectories in human parietal cortex: evidence for controlled processing and skilled performance. Eur J Neurosci 9:378–389

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Höflich P, Binkofski F, Tellmann L, Herzog H, Freund H-J (1998) Role of the premotor cortex for recovery from middle cerebral artery infarction. Arch Neurol 55:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Knorr U, Azari NP, Herzog H, Freund H-J (1999) Visual network activation in recovery from sensorimotor stroke. Restor Neurol Neurosci 14:25–33

    PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M, Fukuyama H, Sato R, Konishi J (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116:1387–1398

    Article  PubMed  Google Scholar 

  • Shima K, Aya K, Mushiake H (1991) Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J Neurophysiol 65:188–202

    PubMed  CAS  Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    Article  Google Scholar 

  • Stapleton JM, Morgang MJ, Liu X, Yung BCK, Phillips RL, Wong DF, Shaya EK, Dannais RF, London ED (1997) Cerebral glucose utilization is reduced in second test session. J Cereb Blood Flow Metab 17:704–712

    Article  PubMed  CAS  Google Scholar 

  • Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Posse S, Herzog H, Sturm V, Zilles K, Seitz RJ, Zilles K (1999a) The role of ventral medial wall motor areas for bimanual coordination: a combined lesion and activation study. Brain 122:351–368

    Article  PubMed  Google Scholar 

  • Stephan KM, Binkofski F, Posse S, Seitz RJ, Freund H-J (1999b) Cerebral midline structures in bimanual coordination. Exp Brain Res [Suppl] (in press)

    Google Scholar 

  • Stephan KM, Binkofski F, Posse S, Seitz RJ, Freund H-J (1999c) Cerebral midline structures in bimanual coordination. Exp Brain Res 128:243–249

    Article  PubMed  CAS  Google Scholar 

  • Stepniewska I, Preuss TM, Kaas J (1993) Architectonics, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of Owl monkey. J Comp Neurol 330:238–271

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme Medical, Stuttgart New York

    Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19:251–268

    Article  PubMed  CAS  Google Scholar 

  • Tootell RBH, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR, Belliveau JWJ (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    PubMed  CAS  Google Scholar 

  • Watson JDG, Myers R, Frackowiak RSJ, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3:79–94

    Article  PubMed  CAS  Google Scholar 

  • Weinrich M, Wiese SP, Mauritz K-H (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107:385–414

    Article  PubMed  Google Scholar 

  • Wise SP (1991) What are the specific functions of the different motor areas? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues. John Wiley and Sons, New York, pp 463–485

    Google Scholar 

  • Wunderlich G, Knorr U, Stephan KM, Azari NP, Teilmann L, Herzog H, Seitz RJ (1997) Dynamic scanning of 15O-butanol with positron emission tomography can identify regional cerebral activations. Hum Brain Map 5:364–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Seitz, R.J., Stephan, K.M., Binkofski, F. (2000). Control of action as mediated by the human frontal lobe. In: Schneider, W.X., Owen, A.M., Duncan, J. (eds) Executive Control and the Frontal Lobe: Current Issues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59794-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59794-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64128-2

  • Online ISBN: 978-3-642-59794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics