Skip to main content

Multicellular Development in the Myxobacteria Myxococcus xanthus and Stigmetalla aurantiaca

  • Chapter
Development

Abstract

The myxobacteria are a group of Gram-type negative soil-dwelling organisms which possess many unusual features including gliding motility, which allows cell movement only on surfaces, the largest prokaryotic genome, antibiotic production rivaled only by the actinomycetes, and a number of eukaryotic-like proteins including serine-threonine protein kinases and reverse transcriptase. The most unique feature of the myxobacteria, however,is their ability to construct multicellula fruiting bodies under nutritional stress (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dworkin M (1996) Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60:70–102

    PubMed  CAS  Google Scholar 

  2. Dworkin M, Kaiser D (1993) Myxobacteria II. American Society for Microbiology, Washington, DC.

    Google Scholar 

  3. Hartzell PL, Youderian P (1995) Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol 164:309–323

    Article  PubMed  CAS  Google Scholar 

  4. Kim SK, Kaiser D (1992) Control of cell density and pattern by intercellular signaling in Myxococcus development. Annu Rev Microbiol 46:117–139

    Article  PubMed  CAS  Google Scholar 

  5. Reichenbach H, Gerth K, Irschik H, Kunze B, Hofle G (1988) Myxobacteria: a source of new antibiotics. Biotechnology 6:115–121

    CAS  Google Scholar 

  6. Blackhart BD, Zusman DR (1985) Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA 82:8767–8770

    Article  PubMed  CAS  Google Scholar 

  7. Dworkin M, Gibson SM (1964) A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146:243–244

    Article  PubMed  CAS  Google Scholar 

  8. Kearns DB, Shimkets LJ (1998) Chemotaxis in a gliding bacterium. Proc Natl Acad Sci USA 95:11957–11962

    Article  PubMed  CAS  Google Scholar 

  9. Kuner JM, Kaiser D (1982) Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151:458–461

    PubMed  CAS  Google Scholar 

  10. Inouye M, Inouye S, Zusman DR (1979) Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc Natl Acad Sci USA 76:209–213

    Article  PubMed  CAS  Google Scholar 

  11. McBride MJ, Kohler T, Zusman DR (1992) Methylation of FrzCD, a methyl- accepting taxis protein of Myxococcus xanthuSy is correlated with factors affecting cell behavior. J Bacteriol 174:4246–4257

    PubMed  CAS  Google Scholar 

  12. McCleary W, McBride M, Zusman DR (1990) Developmental sensory transduction in M. xanthus involves methylation and demethylation of FrzCD. J Bacteriol 172:4877–4887

    PubMed  CAS  Google Scholar 

  13. McCleary W, Zusman D (1990) Purification and characterization of the M. xanthus FrzE protein shows that it has autophosphorylation activity. J Bacteriol 172:6661–6668

    PubMed  CAS  Google Scholar 

  14. O’Connor KA, Zusman DR (1989) Patterns of cellular interactions during fruiting body formation in Myxococcus xanthus. J Bacteriol 171:6013–6024

    PubMed  Google Scholar 

  15. Rosenberg E, Keller KH, Dworkin M (1977) Cell densitydependent growth of Myxococcus xanthus on casein. J Bacteriol 129:770–777

    PubMed  CAS  Google Scholar 

  16. Sager B, Kaiser D (1993) Two cell-density domains within the Myxococcus xanthus fruiting body. Proc Natl Acad Sci USA 90:3690–3694

    Article  PubMed  CAS  Google Scholar 

  17. Sager B, Kaiser D (1994) Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8:2793–2804

    Article  PubMed  CAS  Google Scholar 

  18. Shi W, Ngok FK, Zusman DR (1996) Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc Natl Acad Sci USA 93:4142–4146

    Article  PubMed  CAS  Google Scholar 

  19. Shi W, Zusman DR (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci USA 90:3378–3382

    Article  PubMed  CAS  Google Scholar 

  20. Shimkets LJ, Seale TW (1975) Fruiting-body formation and myxospore differentiation and germination in Myxococcus xanthus viewed by scanning electron microscopy. J Bacteriol 121:711–720

    PubMed  CAS  Google Scholar 

  21. Shimkets LJ, Kaiser D (1982) Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 152:451–461

    PubMed  CAS  Google Scholar 

  22. Søgaard-Anderson L, Kaiser D (1996) C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci USA 93:2625–2679

    Google Scholar 

  23. Cashel M, Rudd KE (1987) The stringent response. In: Neidhardt FC, Low KG, Magasanik B, Schaecter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. ASM Press, Washington, DC, pp 167–178

    Google Scholar 

  24. Manoil C, Kaiser D (1980) Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 141:305–315

    PubMed  CAS  Google Scholar 

  25. Singer M, Kaiser D (1995) Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9:1633–1644

    Article  PubMed  CAS  Google Scholar 

  26. Kuspa A, Kaiser D (1989) Genes required for developmental signaling in Myxococcus xanthus: three asg loci. J Bacteriol 171:2762–2772

    PubMed  CAS  Google Scholar 

  27. Kuspa A, Plamann L, Kaiser D (1992) A-Signaling and the cell density requirement for Myxococcus xanthus development. J Bacteriol 174:7360–7369

    PubMed  CAS  Google Scholar 

  28. Li Y, Plamann L (1996) Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein. J Bacteriol 178:289–292

    PubMed  CAS  Google Scholar 

  29. Plamann L, Davis JM, Cantwell B, Mayor J (1994) Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J Bacteriol 176:2013–2020

    PubMed  CAS  Google Scholar 

  30. Plamann L, Li Y, Cantwell B, Mayor J (1995) The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 177:2014–2020

    PubMed  CAS  Google Scholar 

  31. Crawford EW Jr, Shimkets LJ (1999) Myxococcus xanthus cell cycle control by SocE and the CsgAC-signaling protein, (submitted)

    Google Scholar 

  32. Kim SK, Kaiser D (1990 a) C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61:19–26

    Article  PubMed  CAS  Google Scholar 

  33. Kim SK, Kaiser D (1990 b) Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev 4:896–905

    Article  PubMed  CAS  Google Scholar 

  34. Lee B-U, Lee K, Mendez J, Shimkets LJ (1995) A tactile sensory system of Myxococcus xanthus involves and extracellular NAD(P)+-containing protein. Genes Dev 9:2964–2973

    Article  PubMed  CAS  Google Scholar 

  35. Li S, Lee B, Shimkets LJ (1992) csgA expression entrains Myxococcus xanthus development. Genes Dev 6:401–410

    Article  PubMed  CAS  Google Scholar 

  36. Shimkets L, Rafiee H (1990) CsgA, an extracellular protein essential for M. xanthus development. J Bacteriol 172:5299–5306

    PubMed  CAS  Google Scholar 

  37. Søgaard-Anderson L, Slack FJ, Kimsey H, Kaiser D (1996) Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10:740–754

    Article  Google Scholar 

  38. Gerth K, Metzger R, Reichenbach H (1993) Induction of myxospores in Stigmatella aurantiaca (mycobacteria): inducers and inhibitors of myxospore formation, and mutants with a changed sporulation behavior. J Gen Microbiol 139:865–871

    CAS  Google Scholar 

  39. Grilione PL, Pangborn J (1975) Scanning electron microscopy of fruiting body formation by myxobacteria. J Bacteriol 124:1558–1565

    PubMed  CAS  Google Scholar 

  40. Hull WE, Berkessel A, Plaga W (1998) Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone. Proc Natl Acad Sci USA 95:11268–11273

    Article  PubMed  CAS  Google Scholar 

  41. Inouye, S, White D, Inouye M (1980) Development of Stigmatella aurantiaca: effects of light and gene expression. J Bacteriol 141:1360–1365

    PubMed  CAS  Google Scholar 

  42. Morikawa Y, Takayama S, Fudo R, Yamanaka S, Mori K, Isogai A (1998) Absolute chemical structure of the mycobacterial pheromone of Stigmatella aurantiaca that induces the formation of its fruiting body. FEMS Microbiol Lett 165:29–34

    Article  CAS  Google Scholar 

  43. Plaga W, Stamm I, Schairer HU (1998) Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, a myxobacterial pheromone. Proc Natl Acad Sci USA 95:11263–11267

    Article  PubMed  CAS  Google Scholar 

  44. Quails GT, Stephens K, White D (1978 a) Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca. Science 201:444–445

    Article  Google Scholar 

  45. Quails GT, Stephens K, White D (1978 b) Morphogenetic movements and multicellular development in the fruiting myxobacterium, Stigmatella aurantiaca. Devel Biol 66:270–274

    Article  Google Scholar 

  46. Slack F, Ruvkun G (1997) Temporal pattern formation by heterchronic genes. Annu Rev Genet 31:611–634

    Article  PubMed  CAS  Google Scholar 

  47. Stephens K, Hegeman GD, White D (1982) Pheromone produced by the myxobacterium Stigmatella aurantiaca. J Bacteriol 149:739–747

    PubMed  CAS  Google Scholar 

  48. Stephens K, White D (1980 a) Morphogenetic effects of light and guanine derivatives on the fruiting myxobacterium Stigmatella aurantiaca. J Bacteriol 144:322–326

    PubMed  CAS  Google Scholar 

  49. Stephens K, White D (1980 b) Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca. J Bacteriol 144:322–326

    PubMed  CAS  Google Scholar 

  50. Stephens K, White D (1980 b) Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca lacking a coat and revealing a cellular stalk. FEMS Microbiol Lett 9:189–192

    Article  Google Scholar 

  51. Stevens A (1995) Trail following and aggregation of myxobacteria. J Biol Syst 3:1059–1068

    Article  Google Scholar 

  52. Vasquez GM, Quails F, White D (1985) Morphogenesis of Stigmatella aurantiaca fruiting bodies. J Bacteriol 163: 515–521.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Crawford, E.W., Shimkets, L.J. (1999). Multicellular Development in the Myxobacteria Myxococcus xanthus and Stigmetalla aurantiaca . In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics