Skip to main content

Methods for waveguide characterisation

  • Chapter
Photonic Devices for Telecommunications
  • 503 Accesses

Abstract

Several methods have been devised and used over the years for the determination of waveguide parameters; a few are related to, or derived from, techniques used for optical fibre characterisation, but many are significantly different from their fibre counterparts, or have no counterpart at all in the field of fibres. This difference comes from several reasons, namely from the wide variety of optical materials, refractive index and index differences, dispersion, geometrical shape and symmetry properties, and fabrication techniques which are commonplace in the field of integrated optics. This is in contrast with the far more circumscribed range for fibres, which exhibit (nearly perfect) cylindrical symmetry, negligible attenuation, small refractive index difference, well-known material properties and (obvious but very important) flexibility and availability in long lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Pozzi, C. De Bernardi, and S. Morasca, “Group effective indices of different types of optical fibres measured around 1550 nm.” J. Appl. Phys., vol. 75, No. 6, pp. 3190–3192, 1994.

    Article  Google Scholar 

  2. E.P. Belserene, “Rhythms of a variable star”, Sky and Telescope, pp. 288-290, 1988.

    Google Scholar 

  3. R.C. Youngquist, S. Carry, and D.E.N. Davies, “ Optical coherence-domain reflectometry: a new optical evaluation technique”. Opt. Lett., vol. 12, No. 3, pp. 158–160, 1987.

    Article  Google Scholar 

  4. K. Takada, I. Yokohama, K. Chida, and J. Noda, “ New measurement system for fault location in optical waveguide devices based on an interferometric technique”, Appl. Opt., vol. 29, No. 9, pp. 1603–1606, 1987.

    Article  Google Scholar 

  5. B.L. Danielson and C.D. Whittenberg, “Guided wave retlectometry with micrometre resolution”, Appl. Opt., vol. 26, No. 14, pp. 2836–2842, 1987.

    Article  Google Scholar 

  6. K. Takada, N. Takato, J. Noda, and N, Uchida, “Interferometric optical-time-domain reflectometer to determine backscattering characterisation of silica-based glass waveguides”, J. Opt. Soc. Am. A, vol. 7, No. 5, pp. 857–867, May 1990.

    Article  Google Scholar 

  7. Ch. Zimmer and H.H. Gilgen, “Optical retlectometry for integrated optical components”, Proceedings ECIO 93, April 1993, Neuchatel, Switzerland, pp. 14–16.

    Google Scholar 

  8. P. Lambelet, P.Y. Fonjallaz, H.G. Limberger, R.P. Salate, Ch. Zimmer, and H.H. Gilgen, “Bragg grating characterisation by optical low-coherence reflectometry”, IEEE Photon. Technol Letters, vol. 5, No. 5, pp. 565–567, May 1993.

    Article  Google Scholar 

  9. K. Takada, A. Himeno, and K. Yukimatsu, “Resolution control of low-coherence optical time-domain reflectometrer between 14 and 290 urn”, IEEE Photon. Technol. Letters, vol. 3, No. 7, pp. 676–678, July 1991.

    Article  Google Scholar 

  10. A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, “High-resolution OCDR for testing integrated-optical waveguides: Dispersion-corrupted experimental data corrected by numerical algorithm”, J Lightwave Technol., vol. 9, No. 11, pp. 1493–1502, 1991.

    Article  Google Scholar 

  11. L.-T. Wang, K. Liyama, F. Tsukada, N. Yoshida, and K. Hayashi, “ Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry”, Opt. Lett., vol. 18, No. 13, pp. 1095–1097, 1993.

    Article  Google Scholar 

  12. D. Brooks and S. Ruschin, “Improved near-field method for refractive index measurement of optical waveguides”, IEEE Photon. Technol. Lett., vol. 8 no. 2, pp. 254–256, 1996.

    Article  Google Scholar 

  13. Y. Yang,, N.P. Galatsanos, and H. Stark, “Projection-based blind deconvolution”, J.Opt.Soc.Am. A, vol. 11, pp. 2401–2409, 1994.

    Article  Google Scholar 

  14. N.F. Law and D.T. Nguyen, “Improved convergence of projection based blind deconvolution”, Electron. Lett., vol. 31 no. 20, pp. 1732–1733, 1995.

    Article  Google Scholar 

  15. W.T. Anderson and D.L. Philen, “Spot size measurements for single-mode fibers - a comparison of four techniques”. J.Lightwave Technol., vol.LT-1, p. 20, 1983.

    Article  Google Scholar 

  16. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “ Mode field diameter measurements in single-mode optical fibers.” J.Lightwave Technol., vol.7, p. 1139, 1989.

    Article  Google Scholar 

  17. M. Halfmann, Messung der Feldverteilung mid des Brechzahlprofils von integriertoptischen Wellenleitern. Thesis. University of Kaiserslautern, Germany, 1994.

    Google Scholar 

  18. R. Gold, “An iterative unfolding method for response matrices.” AEC Res. and Develop. Rep. ANL-6984, Argonne National Lab., 1964.

    Google Scholar 

  19. O. Leminger and R. Zengerle, “Eigenmode calculation of dielectric waveguides near cutoff using the Rayleigh-Ritz method with rational basis functions.” Opt. Quantum Electron., vol. 27, p. 1009, 1995.

    Article  Google Scholar 

  20. S.I. Najafi, Introduction to Glass Integrated Optics, Artech House, Inc., Norwood, MA., 1992.

    Google Scholar 

  21. G. Lamouche and S.I. Najafi, “Scalar Finite-Element Evaluation of Cut-Off Wavelength in Glass Wave Guides and Comparison with Experiment”, Can. J. Phys. vol. 68, pp. 1251–1256, 1990.

    Article  Google Scholar 

  22. Y. Kitayama and S. Tanaka,: “Length Dependence of LPn Mode Cutoff and its Influence on the Chromatic Dispersion Measurements by Phase Shift Method”, SPIE, vol. 584. pp. 229–234, 1985.

    Google Scholar 

  23. G. Coppa, B. Costa, P. Di Vita, and U. Rossi, “ Cut-Off Wavelength and Mode-Field Diameter Measurements in Single-Mode Fibers”, SPIE, vol. 584, pp. 210–214, 1985.

    Google Scholar 

  24. CCITT Recommendation G.652 “Characteristics of Single-Mode Optical Fibre Cable”, Geneva, 1984.

    Google Scholar 

  25. K. Thyagarajan, A. Enard, P. Kayoun, D. Papillon, and M. Papuchon,“Measurement of Guided Mode Cut-Off Wavelengths in Ti:LiNbO3 Channel Waveguides”, European Conference on Integrated Optics, ECIO ’85, pp. 236–239, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Bernardi, C., Küng, A., Leminger, O. (1999). Methods for waveguide characterisation. In: Guekos, G. (eds) Photonic Devices for Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59889-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59889-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64168-8

  • Online ISBN: 978-3-642-59889-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics