Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 36))

Abstract

The normal surface state for metallic materials is an oxide skin since a bare surface would be a highly unstable chemical situation in the oxidizing air atmosphere of our earth. Most metals form at ambient and even at low temperatures thin adherent oxide scales which protect the bulk of the metal from further attack by reactive gas molecules. The growth of such tarnishing layers is a complex process. The reacting elements, metal atoms and oxygen molecules, are separated by the oxide skin formed as reaction product. This is an ionic compound and, therefore, the more mobile atom of the two reactants has to be transferred first to a charged defect in the crystal lattice before it can migrate to the reaction front. An electric field can exist across the oxide layer and introduce additional effects that make understanding of the reaction mechanism more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 5

  1. G. Tammann: Z. Anorganische Chemie 111, 78 (1920).

    Google Scholar 

  2. N. B. Pilling R. E. Bedworth: J. Inst. Metals 29, 529 (1923).

    Google Scholar 

  3. C. Wagner: Z. physik. Chem. B21, 25 (1933).

    Google Scholar 

  4. C. Wagner: Z. physik. Chem. B32, 447 (1936).

    Google Scholar 

  5. K. Hauffe: Oxidation of Metals (Plenum, New York 1965).

    Google Scholar 

  6. N. Cabrera N. F. Mott: Rep. Prog. Phys. 12, 163 (1949).

    Article  ADS  Google Scholar 

  7. A. T. Fromhold Jr: Theory of Metal Oxidation, Vol. 1, Fundamentals (North-Holland, Amsterdam 1976); Vol. II, Space Charge (North-Holland, Amsterdam 1980).

    Google Scholar 

  8. E. Fromm: Model Calculations of Metal Oxidation at Ambient Temperatures in J. Nowotny, W. Weppner (eds.): Non-stoichometrie Compounds, Surfaces, Grain Boundaries and Structural Defects, (Kluwer, Drodrecht, Boston 1989) pp. 523–534.

    Google Scholar 

  9. V. Grajewski E. Fromm: Low-temperature oxidation of metals, in Interface Segregation and Related Processes, ed. by J. Nowotny (Trans. Tech. Publ., Zürich 1991) pp. 337–399.

    Google Scholar 

  10. M. Martin E. Fromm: J. Allogs and Compounds 258, 7–16 (1997).

    Google Scholar 

  11. M. Martin: Experimente mit der Schwingquarzwaage zur Oxidation von Eisen-, Aluminium- und Titanfilmen zwischen 50 und 200 °C und Modellrechnungen zur Raumtemperaturoxidation, Dissertation, University of Tübingen (1992); and Fortschrittberichte VDI, Serie 5: Grund- und Werkstoffe Nr. 311 (VDI Verlag, Düsseldorf 1993).

    Google Scholar 

  12. F. P. Fehlner: Low-Temperature Oxidation, The Role of Vitreous Oxides (Wiley, New York 1986).

    Google Scholar 

  13. H. Chichy E. Fromm: Thin Solid Films 195, 147–158 (1991).

    Google Scholar 

  14. M. Martin W. Mader E. Fromm: Thin Solid Films 250, 61–66 (1994).

    Google Scholar 

  15. E. Fromm O. Mayer: Surface Sci. 74, 259–275 (1978).

    Google Scholar 

  16. U. R. Evans: The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, (St. Marlins’s Press, New York 1960).

    Google Scholar 

  17. N. F. Mott: Trans. Faraday Soc. 35, 1175 (1939); 36, 472 (1940).

    Google Scholar 

  18. W. Schottky: Zur Frage der rationalen Störstellenbezeichnung, in Halbleiterprobleme, 4, 235 (Vieweg, Braunschweig 1958).

    Google Scholar 

  19. H. Rickert: Electrochemistry of Solids (Springer, Berlin, Heidelberg 1982).

    Google Scholar 

  20. J. D. Jackson: Classical Electrodynamics (Wiley, New York 1975).

    MATH  Google Scholar 

  21. S. Gladstone K. J. Laidler H. Eyring: The Theory of Rate Processes (Mc Graw-Hill, New York 1941).

    Google Scholar 

  22. Ch. Kittel: Introduction to Solid State Physics (Wiley, New York 1976) p. 244.

    Google Scholar 

  23. V. Grajewski: Modellrechnungen zur Raumtemperatur-oxidation von Metallen und Experimente mit Nickel- und Titanfilmen, Dissertation, University of Stuttgart (1989).

    Google Scholar 

  24. S. R. Pollack C. E. Morris: J. Appl. Phys. 35, 1503 (1964).

    Article  ADS  Google Scholar 

  25. J. E. Boggio R. C. Plumb: Chem. Phys. 44, 1081 (1966).

    Google Scholar 

  26. J. E. Boggio: J. Chem. Phys. 53, 3544 (1970).

    Article  ADS  Google Scholar 

  27. M. RonayE. E. Latta: Phys. Rev. B 32, 537 (1985).

    Google Scholar 

  28. N. Tsuda K. Nasu A. Yanase K. Siratori: Electronic Conduction in Oxides, Springer Ser. Solid- State Sci., Vol. 94 (Springer, Berlin, Heidelberg 1991).

    Google Scholar 

  29. P. A. Cox: Transition Metal Oxides (ClarendonOxford 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, E. (1998). Low-Temperature Oxidation. In: Kinetics of Metal-Gas Interactions at Low Temperatures. Springer Series in Surface Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60311-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60311-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63975-6

  • Online ISBN: 978-3-642-60311-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics