Skip to main content
  • 45 Accesses

Zusammenfassung

Die Single-Photon-Emissions-Computer-Tomographie (SPECT) und die Positronen-Emissions-Tomographie (PET) sind Verfahren, die zur dreidimensionalen Darstellung von Radioaktivitätsverteilungen im Körper eingesetzt werden. Sie unterscheiden sich wesentlich in der Art der Strahlendetektorsysteme und in den zur Anwendung geeigneten Radionukliden und Radiopharmaka. Dieses Kapitel gibt eine Übersicht über die historische Entwicklung und die physikalisch-technischen Unterschiede und vergleicht die klinischen und wissenschaftlichen Einsatzmöglichkeiten der beiden Verfahren zur Untersuchung des Herzens. Es wird verdeutlicht, warum die Anzahl der PET-Geräte trotz methodischer Vorteile wesentlich geringer ist als die der SPECT, die sich zu einem nuklearmedizinischen Standardverfahren entwickelt hat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Kuhl DE, Edwards RQ (1963) Image separation radio-isotope Scanning. Radiology 80: 653–662.

    Google Scholar 

  2. Hounsfield GN, Ambrose J, Perry J et al. (1973) Computerized transverse axial scanning (tomography), pt I: Description of system. Br J Radiol 46: 1016–1051.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhl DE, Edwards RQ (1968) Reorganizing data from transverse section scans of the brain using digital processing. Radiology 91: 975–983.

    PubMed  CAS  Google Scholar 

  4. Kühl DE, Edwards RQ (1970) The mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology 96: 563–570.

    PubMed  Google Scholar 

  5. Kühl DE (1976) The Mark IV system for radionuclide computed tomography of the brain. Radiology 121: 405–413.

    PubMed  Google Scholar 

  6. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34: 2722–2727.

    Article  Google Scholar 

  7. Keyes JW, Kay DB, Lees DEB, Simon W, Walters TE (1974) Applied comparison of methods for radionuclide transverse section tomography In: Proc ist World Congr Nuclear Medicine, World Federation of Nuclear Medicine and Biology, Tokyo, Jpn, pp 1281–1283.

    Google Scholar 

  8. Budinger TF, Derenzo SE, Gullberg GT (1977) Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1: 131–145.

    Article  PubMed  CAS  Google Scholar 

  9. Rankowitz S, Robertson JS, Higinbotham WA, Niell AM (1962) Positron scanner for locating brain tumors. IRE Int Conv Ree 9: 49–56.

    Google Scholar 

  10. Robertson JS, Neil AM (1962): Use of a digital computer in the development of a positron scanning procedure. In: Proc 4th IBM Medical Symp, pp 77–103.

    Google Scholar 

  11. Muehllehner G, Wetzel RA (1971) Section imaging by computer calculation. J Nucl Med 12: 76–84.

    PubMed  CAS  Google Scholar 

  12. Todd-Pokropek AE (1972) The formation and display of section scans. In: Proc Symp American Congress of Radiology, 1971. Excerpta Medica, Amsterdam, pp 545–556.

    Google Scholar 

  13. Burham CA, Brownell GL (1972) A multi-crystal positron camera. IEEE Trans Nucl Sci NS-19: 201–205.

    Google Scholar 

  14. Bowley AR, Taylor CG, Causer DA et al. (1973) A radioisotope scanner for rectilinear, arc, tranverse section and longitudinal section scanning (ASS-The Aberdeen Section Scanner). Br J Radiol 46: 262–271.

    Article  PubMed  CAS  Google Scholar 

  15. Anger HO (1973) Multiple plane tomographic scanner. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Society of Nuclear Medicine, New York, pp 2–18.

    Google Scholar 

  16. Tanaka E (1973) Multi-crystal section imaging device and its data processing. In: Proc 13th Congr Radiology, Madrid. Excerpta Medica, Amsterdam, pp 81–85.

    Google Scholar 

  17. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A Positron-Emission Transaxial Tomograph for nuclear medicine imaging (PETT). Radiology 114: 89–98.

    PubMed  CAS  Google Scholar 

  18. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–233.

    PubMed  CAS  Google Scholar 

  19. Hoffmann EJ, Phelps ME, Mullani NA et al. (1976) Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17: 49–502.

    Google Scholar 

  20. Ido T, Wan CN, Casella V et al. (1978) Labeled 2-deoxy-D-glucose analogs. i8F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C–2-deoxy-2-fluoro-D-glu-cose. J Lab Comp Radiopharm 14:175–183.

    Article  CAS  Google Scholar 

  21. Reivich M, Kuhl DE, Wolf A, Greenberg J, Phelps ME, Ido T, Casella V, Fowler J, Hoffman EJ, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137.

    PubMed  CAS  Google Scholar 

  22. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-deoxy-D-glucose: Validation of method. Ann Neurol 6: 371–388.

    Article  PubMed  CAS  Google Scholar 

  23. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Sächs Ges Wiss, Leipzig Math Phys 69: 262–277.

    Google Scholar 

  24. Meikle SR, Bailey DL, Hooper PK et al. (1995) Simultaneous emission and transmission measurements for attenuation correction in whole-body PET. J Nucl Med 36: 1680–1688.

    PubMed  CAS  Google Scholar 

  25. Goldstein RA, Mullani NA, Wong WH, Hartz RK, Hicks CH, Fuentes F, Smalling RW, Gould KL (1986) Positron imaging of myocardial infarction with rubidium-82. J Nucl Med 27: 1824–1829.

    PubMed  CAS  Google Scholar 

  26. Schelbert HR, Phelps ME, Hoffman EJ et al. (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43: 209–218.

    Article  PubMed  CAS  Google Scholar 

  27. Smith GT, Huang SC, Nienaber CA, Krivokapich J, Schelbert HR (1988) Noninvasive quantification of regional myocardial blood flow with N-13 ammonia and dynamic PET. J Nucl Med 29: 940 (Abstract).

    Google Scholar 

  28. Walsh MN, Bergmann SR, Steele RL et al. (1988) Delineation of impaired regional myocardial perfusion by positron emission tomography with H2(15)0. Circulation 78: 612–620.

    Article  PubMed  CAS  Google Scholar 

  29. Iida H, Kanno I, Takahashi et al. (1988) Measurement of absolute myocardial blood flow with H2(15)0 and dynamic positron-emission tomography - Strategy for quantification in relation to the partial-volume effect. Circulation 78: 104–115.

    Article  PubMed  CAS  Google Scholar 

  30. Beanlands R, Muzik O, Mintun M et al. (1992) The kinetics of copper-62-PTSM in the normal human heart. J Nucl Med 33: 684–690.

    PubMed  CAS  Google Scholar 

  31. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR (1982) Positron emission tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23: 577–586.

    PubMed  CAS  Google Scholar 

  32. Schelbert HR, Henze E, Sochor H, Grossman RG, Huang SC, Barrio JR, Schwaiger M, Phelps ME (1986) Effects of substrate availablity on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 111: 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  33. Coenen HH, Klatte B, Knöchel A, Schüller M, Stöcklin G (1986) Preparation of n.c.a. [17–18F]-fluoroheptadecanoic acid in high yields via aminopolyether supported, nucleophilic fluori-nation. J Label Comp Radiopharm 23: 455–466

    Article  CAS  Google Scholar 

  34. Ebert A, Herzog H, Stöcklin GL, Henrich MM, DeGrado TR, Coenen HH, Feinendegen LE (1994) Kinetics of 14(R, S)-Fluorine-18-Fluoro-6-thia-heptadecanoic acid in normal human hearts at rest, during exercise and after dipyridamole injection. J Nucl Med 35: 51–56.

    PubMed  CAS  Google Scholar 

  35. Harper PV, Lathrop K, Siemens W, Weiss L (1962) Metabolism of Technetium-99m. Radiat Res 16: 593 (Abstract).

    Google Scholar 

  36. Harper PV, Beck R, Charleston D, Lathrop KA (1964) Optimization of a scanning method using 99mTc. Nucleonics 22: 50–54.

    CAS  Google Scholar 

  37. Ficaro EP, Fessler JA, Rogers WL, Schwaiger M (1994) Comparison of Americium-241 and Technetium-99m as transmission sources for attenuation correction of thallium-201 SPECT imaging of the heart. J Nucl Med 35: 652–663.

    PubMed  CAS  Google Scholar 

  38. Meikle SR, Hutton BF, Bailey DL (1994) A transmission-dependent method for scatter correction in SPECT. J Nucl Med 35: 360–367.

    PubMed  CAS  Google Scholar 

  39. Buvat I, Rodiguez-Villafuerte M, Todd-Prokopek A et al. (1995) Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 36: 1476–1488.

    PubMed  CAS  Google Scholar 

  40. Langen KJ, Ziemons K, Kiwit JCW, Herzog H, Kuwert T, Bock WJ, Stöcklin G, Feinendegen LE, Müller-Gärtner HW (1997) 3-[123I]Iodo-a-methyltyrosine and [methyl-11 C]-L-methio-nine uptake in cerebral gliomas: A comparative study using SPECT and PET. J Nucl Med (in press).

    Google Scholar 

  41. Lebowitz E, Greene MW, Fairchild R et al. (1975) Thallium-201 for medical use, I. J Nucl Med 16:151–155.

    PubMed  CAS  Google Scholar 

  42. Nielson AP, Morris KG, Murdock R et al. (1980) Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 61: 797–801.

    Google Scholar 

  43. Wackers FJTh, Berman DS, Maddahi J et al. (1989) Technetium-99m hexakis 2-methoxyiso-butyl isonitrile: Human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30: 301–311.

    PubMed  CAS  Google Scholar 

  44. Mousa SA, Cooney JM, Williams SJ (1990) Relationship between regional myocardial blood flow and the distribution of99m Tc-sestamibi in the presence of total coronary artery occlusion. Am Heart J 119: 842–847.

    Article  PubMed  CAS  Google Scholar 

  45. Gray WA, Gewirtz H (1991) Comparison of 99mTc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 84:1796–1807.

    PubMed  CAS  Google Scholar 

  46. Jain D, Wackers FJTh, Matterà J et al. (1992) Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 34: 1254–1259.

    Google Scholar 

  47. Höck A, Freundlieb C, Vyska K, Lösse B, Erbel R, Feinendegen LE (1984) Myocardial Imaging and metabolic studies with i7–I123-Iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy. J Nucl Med 24:22–28.

    Google Scholar 

  48. Reske SN, Sauer W, Machulla HJ, Winkler C (1984) i5-p-I-123-iodophenyl-pentadecanoic acid as a tracer of lipid metabolism: Comparison with C-14-palmitate in murine tissues. J Nucl Med 25: 1335–1342.

    PubMed  CAS  Google Scholar 

  49. Sisson JC, Shapiro B, Meyers LJ et al. (1987) Meta-iodobenzylguanidine to map scintigraphi-cally the adrenergic nervous system in man. J Nucl Med 28: 1625–1636.

    PubMed  CAS  Google Scholar 

  50. Gould KL, Goldstein RA, Mullani NA (1989) Economic analysis of clinical positron emission tomography of the heart with rubidium-82. J Nucl Med 30: 707–717.

    PubMed  CAS  Google Scholar 

  51. Gould KL (1991) PET perfusion imaging and nuclear cardiology. J Nucl Med 32: 579–606.

    PubMed  CAS  Google Scholar 

  52. Brunken R, Schwaiger M, Grover-McKay M et al. (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 10: 557–567.

    Article  PubMed  CAS  Google Scholar 

  53. Rosetti C, Landoni C, Lucignani G et al. (1995) Assessment of myocardial perfusion and viability with technetium-99m methoxyisobutylisonitrile and thallium-201 rest restribution in chronic coronary artery disease. Eur J Nucl Med 22: 1306–1312.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzog, H., Langen, KJ. (1997). SPECT vs. PET. In: Wieler, H.J. (eds) Single-Photon-Emissions-Computertomographie (SPECT) des Herzens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60621-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60621-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64479-5

  • Online ISBN: 978-3-642-60621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics