Skip to main content

Molecular cloning of new basic helix-loop-helix proteins from the mammalian central nervous system

  • Conference paper
Molecular Signaling and Regulation in Glial Cells

Abstract

The development of neuronal and glial cells in the mammalian central nervous system requires the coordinate expression of cell type-specific subsets of genes. When development has been completed, fully differentiated cells maintain their characteristic properties by continously integrating cell-intrinsic and -extrinsic signals which converge, ultimately, at the level of gene transcription. This integration is executed by the combined activity of cell type-specific and ubiquitous transcription factors, but the underlying combinatorial code is little understood. In such regulatory systems, the repression of some genes is as important as specific gene activation. Autoregulative circuits, which include both transcriptional activators and repressors, are thought to stabilize the phenotype of each cell. To better understand the molecular mechanisms which underlie normal development and differentiation of the nervous system, it is essential to identify the key players in gene transcription. This also applies to the understanding of regenerative processes, which are thought to recapitulate, at least in part, the steps of normal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S., Kageyama, R. (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730–8738.

    Article  PubMed  CAS  Google Scholar 

  • Bartholoma, A. and Nave, K.-A. (1994) NEX-1: a novel brain-specific helixloop-helix protein with autoregulation and sustained expression in mature cortical neurons. Mech. of Dev. 48, 217–228.

    Article  CAS  Google Scholar 

  • Bartholoma, A., Schwab, M., Gass, P., Nave, K.-A. (1995) The brain-specific Helix-Loop-Helix protein NEX-1: A neuronal activator of GAP43? Soc. Neurosci. Abstracts. 21, 1290.

    Google Scholar 

  • Beckmann, H.L. and Kadesch, T. (1990) TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes & Dev. 5, 1057–1066.

    Google Scholar 

  • Begley, C. G., Lipkowitz, S., Gobel, V., Mahon, K. A., Bertness, V., Green, A. R., Gough, N. M. and Kirsch, I. R. (1992) Molecular characterization of NSCL, a gene encoding a helix-loop-helix protein expressed in the developing nervous system. Proc. Natl. Acad. Sci. USA 89, 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Benezra, R., Davis, R. L., Lockshon, D., Turner, D. and Weintraub, H. (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, O., Drago, J. and Sheng, H. (1992) L-myc and N-myc influence lineage determination in the central nervous system. Neuron 9, 1217-1224. Campos-Ortega, J.A. (1994) Cellular interactions in the developing nervous system of Drosophila. Cell 77, 969–975.

    Google Scholar 

  • Dawson, S.R., Turner, D.L., Weintaub, H., Parkhurst, S.M. (1995) Specificity for the Hairy/Enhancer of split basic Helix-Loop-Helix (bHLH) proteins maps outside die bHLH domain and suggests two seperable modes of transcriptional repression. Mol. Cell. Biol. 15, 6923–6931.

    PubMed  CAS  Google Scholar 

  • Duncan, M., DiCicco-Bloom, E. M., Xiang, X., Benezra, R. and Chada, K. (1992) The gene for die helix-loop-helix protein, Id, is specifically expressed in neural precursors. Dev. Biol. 154, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Feder, J. N., Jan, L. Y. and Jan, Y. N. (1993) A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation. Mol. Cell. Biol. 13, 105–113.

    PubMed  CAS  Google Scholar 

  • Guillemot, F., Lo, L.-C., Johnson, J. E., Auerbach, A., Anderson, D. J. and Joyner, A. L. (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Jan,Y.N. and Jan, L.Y. (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Lassar, A. and Munsterberg, A. (1994) Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr-Opin-Cell-Biol. 6(3): 432–42

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.E., Hollenberg, S.M., Snider, L., Turner, D.L., Lipnick, N. and Weintraub, H., (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Licht, J.D., Grossel, M. J., Figge, J., Hansen, U.M. (1990) Drosophila Kruppel protein is a transcriptional repressor. Nature 346, 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Lo, L.-C., Johnson, J. E., Wuenschell, C. W., Saito, T. and Anderson, D. J. (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 5, 1524–1537.

    Article  PubMed  CAS  Google Scholar 

  • Murre, C. and Baltimore, D. (1992) In Transcriptional Regulation. S.L. McKnight and K.R. Yamamoto, eds. (New York: Cold Spring Harbor Laboratory) pp. 861–879.

    Google Scholar 

  • Ohsako, O., Hyer, J., Panganiban, G., Oliver, I. and Caudy, M., (1994) Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes & Dev. 8, 2743–2755.

    Article  CAS  Google Scholar 

  • Paroush, Z., Finley, R.L., Kidd, T., Wainwright, S.M., Ingham, P.W., Brent, R., Ish-Horowicz, D. (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79, 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Prendergast, G.C. and Ziff, E.G. (1992) A new bind for Myc. Trends Genet. 8, 91–96.

    PubMed  CAS  Google Scholar 

  • Ptashne, M. (1988) How eukaiyotic transcriptional activators work. Nature 335, 683–689.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, C., Akazawa, C., Nakanishi, S. and Kageyama, R. (1995) MATH-2, a mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal, is specifically expressed in the nervous system. Eur.J.Biochem. 229, 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani, R.A.; Mayer, E.L.; Orkin, S.H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-l/SCL. Nature 373, 432–434.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, M. J., Tapscott, S. J., Davis, R. L., Wright, W. E., Lassar, A. B. and Weintraub, H. (1989) Positive autoregulation of the myogenic determination gene MyoDl. Cell 58, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T. K., Turner, D., Rupp, R. and Hollenberg, S. (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, Y., Soriano, P. and Weintraub, H. (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossner, M., Bartholomä, A., Schwab, M., Nave, KA. (1997). Molecular cloning of new basic helix-loop-helix proteins from the mammalian central nervous system. In: Jeserich, G., Althaus, H.H., Richter-Landsberg, C., Heumann, R. (eds) Molecular Signaling and Regulation in Glial Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60669-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60669-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64501-3

  • Online ISBN: 978-3-642-60669-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics