Skip to main content

Evolutionary Patterns and Driving Forces in Vertical Food Web Interactions

  • Chapter
Vertical Food Web Interactions

Part of the book series: Ecological Studies ((ECOLSTUD,volume 130))

Abstract

The evolution of life histories and the structure and function of food webs have been thoroughly reviewed in the last years (Price et al. 1980; Pimm 1982; Schoener 1989; Pimm et al. 1991; Roff 1992; Stearns 1992; Morin and Lawler 1995; Polis and Winemiller 1995). However, although there is considerable mutual interference of both areas, the influence of alternative life history strategies on food web structure and function has scarcely been addressed (Winemiller and Polis 1995). Therefore, we will first present some scenarios created by life-history variation of and interactions between resource and consumer, and we consider the symmetry of a mutual impact as far as it is determined by life histories; the exploitation strategy, i.e. predation or parasitism; the predictability of the resource; the relationship between generation times and the degree of synchronization of life cycles between resource and consumers. These scenarios provide a framework for the evolution of trophic relationships and we will show how particular patterns of life history will lead to particular patterns of interactions between trophic levels (e.g. defense mechanisms, mechanisms related to the rates of speciation, degree of resource utilization etc.). However, life history traits are rarely free to coevolve under purely demographic forces; they are usually more or less constrained. Thus, the evolution of trophic relationships will be also influenced by constraints, an important one being body size. Therefore we will show some examples about how size constraints operate in food web interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agelopoulos NG, Keller MA (1994a) Plant-natural-enemy association in the tritrophic system,Cotesia rubecula-Pierisrapfle-Brassiceae (Cruciferae). II. Sources of infochemicals. J Chem Ecol 20: 1725–1734

    Article  CAS  Google Scholar 

  • Agelopoulos NG, Keller MA (1994b) Plant-natural enemy association in the tritrophic system,Cotesia rubecula-Pierisrapae-Brassiceae (Cruciferae). II. Preference ofC. rubecelafor landing and searching. J Chem Ecol 20: 1735–1748

    Article  CAS  Google Scholar 

  • Agelopoulos NG, Dicke M, Posthumus MA (1995) Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoidCotesia rubecela(Hymenoptera: Braconidae): a behavioral and chemical study. J Chem Ecol 21: 1789–1811

    Article  CAS  Google Scholar 

  • Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33: 211–238

    Article  Google Scholar 

  • Aldrich JR (1995) Chemical communication in the true bugs and parasitoid exploitation. In: CardĂ© PT, Bell WJ (eds) Chemical ecology of insects 2. Chapman & Hall, New York, pp 318–363

    Chapter  Google Scholar 

  • Ananthakrishnan TN, Gopichandran R (1993) Chemical ecology in thrips-host plant interactions. International Science Pubi, New York

    Google Scholar 

  • Askew RR (1973) Parasitic insects. Heineman Educational Books, London

    Google Scholar 

  • Barbosa P (1988a) Some thoughts on the evolution of host range. Ecology 69: 912–915

    Article  Google Scholar 

  • Barbosa P (1988b) Natural enemies and herbivore-plant interactions: influence of plant allelochemicals and host specificity. In: Barbosa P, Letourneau DK (eds) Novel aspects of insect-plant interactions. Wiley, New York, pp 201–229

    Google Scholar 

  • Barbosa P, Letourneau DK (1988) Novel aspects of insect-plant interactions. Wiley, New York Barbosa P, Saunders JA (1985) Plant allelochemicals: linkages between herbivores and their natural enemies. In: Cooper-Driver GA, Swain T, Conn EE (eds) Chemically mediated interactions between plants and other organisms. Recent advances in phytochemistry, vol 19. Plenum Press, New York, pp 107–137

    Google Scholar 

  • Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. TIBS 21: 407–412

    PubMed  CAS  Google Scholar 

  • Bauer G (1986) Life history strategy ofRhagoletis alternata(Diptera: Trypetidae), a fruit fly operating in a “non-interactive” system. J Anim Ecol 55: 785–794

    Article  Google Scholar 

  • Bauer G (1987) The parasitic stage of the freshwater pearl mussel. II. Susceptibility of brown trout. Arch Hydrobiol 76: 393–402

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology. Blackwell, Oxford

    Google Scholar 

  • Benn M, DeGrave J, Gnanasunderam C, Hutchins R (1979) Host-plant pyrrolizidine alkaloids inNyctemera annulataBoisduval: their persistence through the life-cycle and transfer to a parasite. Experientia 35: 731–732

    Article  CAS  Google Scholar 

  • Berenbaum M, Seigier D (1992) Biochemicals: engineering problems for natural selection. In: Roitberg BD, Isman MB (eds) Insect chemical ecology. Chapman & Hall, New York, pp 89–121

    Google Scholar 

  • Bernays E (1989–1994) Insect-plant interactions, 5 vols. CRC Press, Boca Raton

    Google Scholar 

  • Bernays E A, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall,New York

    Google Scholar 

  • Blackburn TM, Lawton JH (1994) Population abundance and body size in animal assemblages.Philos Trans R Soc B 343: 33–39

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma V, Nakashima RP, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257-272 Blum MS (1981) Chemical defenses of arthropods. Academic Press, New York

    Google Scholar 

  • Blum MS (1992) Ingested allelochemicals: in insect wonderland: a menu of remarkable functions. Am Entomol 38: 222–234

    Google Scholar 

  • Bogner F, Eisner T (1991) Chemical basis of egg cannibalism in a caterpillar(Utetheisa ornatrix). J Chem Ecol 17: 2063–2075

    Article  CAS  Google Scholar 

  • Bogner F, Eisner T (1992) Chemical basis of pupal cannibalism in a caterpillar(Utethteisa ornatrix). Experientia 48: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Boland W, Hopke J, Donath J, Niiske J, Bublitz F (1995) Jasmonic acid and coronatin induced odor production in plants. Angew Chem Int Ed Engl 34: 1600–1602

    Article  CAS  Google Scholar 

  • BopprĂ© M (1984) Redefining “pharmacophagy”. J Chem Ecol 10: 1151–1154

    Article  Google Scholar 

  • BopprĂ© M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73: 17–26

    Article  Google Scholar 

  • BopprĂ© M (1995) Pharmakophagie: Drogen, Sex und Schmetterlinge. Biol Unserer Zeit 25: 8–17

    Article  Google Scholar 

  • Börner CB (1952) Aphidae Europae Centralis. Mitt ThĂĽr Bot Ges 4: 1–184

    Google Scholar 

  • Bowers MD (1990) Recycling plant natural products for insect defense. In: Evans DL, Schmidt JO (eds) Insect defenses. SUNY, New York, pp 353–386

    Google Scholar 

  • Bowers MD (1992) The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB (eds) Insect chemical ecology. Chapman & Hall, New York, pp 216–244

    Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars–ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 331–371

    Google Scholar 

  • Bowers MD, Boockvar K, Collinge SK (1993) Iridoid glycosides ofChelone glabra(Scrophulariaceae) and their sequestration by larvae of a sawfly,Tenthredo grandis(Tenthredinidae). J Chem Ecol 19: 815–823

    Article  CAS  Google Scholar 

  • Brandt P (1995) Transgene Pflanzen. Birkhäuser, Basel

    Google Scholar 

  • Bristow C (1991) Why are so few aphids ant-attended? In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford University Press, Oxford, pp 104–119

    Google Scholar 

  • Brockelman WY (1975) Competition, the fitness of offspring and optimal clutch size. Am Nat 109: 677–699

    Article  Google Scholar 

  • Brodsky LM, Barlow CA (1986) Escape responses of the pea aphid,Acyrthosiphon pisum(Harris) (Homoptera: Aphididae): influence of predator type and temperature. Can J Zool 64: 937–939

    Article  Google Scholar 

  • Brower LP (1984) Chemical defence in butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 109–134

    Google Scholar 

  • Brown KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against spider predators. Nature 309: 707–709

    Article  CAS  Google Scholar 

  • Brown KS, Trigo JR (1995) The ecological activities of alkaloids. In: Cordell GA (ed) The alkaloids, vol 47. Academic Press, San Diego, pp 227–354

    Google Scholar 

  • Bruin J, Sabelis MW, Dicke M (1995) Do plants tap SOS signals from their infested neighbours? Tree 10: 167–170

    PubMed  CAS  Google Scholar 

  • Budenberg WJ (1990) Honeydew as a contact kairomone for aphid parasitoids. Entomol Exp Appi 55: 139–148

    Article  Google Scholar 

  • CardĂ© RT, Bell WJ (1995) Chemical ecology of insects 2. Chapman & Hall, New York

    Book  Google Scholar 

  • Carson HL (1975) The genetics of speciation at the diploid level. Am Nat 109: 83–92

    Article  Google Scholar 

  • Caughley (1976) Plant-herbivore-systems. In: May RM (ed) Theoretical ecology. Blackwell, Oxford, pp 94–113

    Google Scholar 

  • Chessin M, Zipf AE (1990) Alarm systems in higher plants. Bot Rev 56: 193–235

    Article  Google Scholar 

  • Codella SG, Raffa KF (1993) Defensive strategies of folivorous sawflies. In: Wagner MR, Raffa KF (eds) Sawfly life history: adaptations to woody plants. Academic Press, San Diego, pp 261–294

    Google Scholar 

  • Cushman JH, Addicott JF (1989) Inter- and intraspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79: 315–321

    Article  Google Scholar 

  • Cushman JH, Addicott JF (1991) Conditional interactions in ant-herbivore mutualisms. In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford University Press, Oxford, pp 92–103

    Google Scholar 

  • Cushman JH, Whitham TG (1989) Conditional mutualism in a membracid-ant association: temporal, age-specific and density-dependent effects. Ecology 70: 1040–1047

    Article  Google Scholar 

  • Cushman JH, Whitham TG (1991) Competition mediating the dynamics of a mutualism: protective services of ants as a limiting resource for membracids. Am Nat 138: 851–865

    Article  Google Scholar 

  • Davis RH, Nahrstedt A (1985) Cyanogenesis in insects. In: Kerkut GA, Gilbert LJ (eds) Comprehensive Insect physiology, biochemistry and pharmacology, vol 11. Pergamon Press, Oxford, pp 635–654

    Google Scholar 

  • Davis RH, Nahrstedt A (1985) Cyanogenesis in insects. In: Kerkut GA, Gilbert LJ (eds) Comprehensive Insect physiology, biochemistry and pharmacology, vol 11. Pergamon Press, Oxford, pp 635–654

    Google Scholar 

  • Dempster JP (1971) The population ecology of the Cinnabar MothTyriajacobea. Oecologia 7: 26–47

    Article  Google Scholar 

  • Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32: 17–48

    Article  CAS  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39: 125–150

    Article  Google Scholar 

  • Dettner K, Scheuerlein A, Fabian P, Schulz S, Francke W (1996) Chemical defense of giant springtailTetrodontophora bielanensis(WAGA) (Insecta: Collembola). J Chem Ecol 22: 1051–1074

    Article  CAS  Google Scholar 

  • Dicke M (1995) Why do plants “talk”? Chemoecology 5 /6: 159–165

    Google Scholar 

  • Dicke M (1995) Why do plants “talk”? Chemoecology 5 /6: 159–165

    Google Scholar 

  • Dicke M, Sabelis MW (1992) Costs and benefits of chemical information conveyance: proximate and ultimate factors. In: Roitberg BD, Isman MB (eds) Insect chemical ecology–an evolutionary approach. Chapman & Hall, New York, pp 122–155

    Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow

    Google Scholar 

  • Dogiel VA (1961) Ecology of the parasites of freshwater fishes. In: Dogiel VA, Petrushevski GK, Polansky YI (eds) Parasitology of fishes. Oliver & Boyd, Edinburgh, pp 1–47

    Google Scholar 

  • Duffey E (1968) Ecological studies on the large copper butterflyLycaena dispar. J Appi Ecol 5: 69–96

    Article  Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25: 447–477

    Article  CAS  Google Scholar 

  • Duffey SS, Bloem KA, Campbell BC (1986) Consequences of sequestration of plant natural products in plant-insect-parasitoid interactions. In: Boethel DJ, Eikenbary RD (eds) Interactions of plant resistance and parasitoids and predators of insects. Elis Horwood, New York, pp 31–60

    Google Scholar 

  • Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix. Proc Natl Acad Sci USA 85: 5992–5996

    Article  PubMed  CAS  Google Scholar 

  • Eisner T (1970) Chemical defense against predation in arthropods. In: Sontheimer E, Simeone JB (eds) Chemical ecology. Academic Press, New York

    Google Scholar 

  • Eisner T, Conner J, Carrel JE, McCormick JP, Slagle AJ, Gans C, O’Reilly JC (1990) Systemic retention of ingested cantharidin by frogs. Chemoecology 1: 57–62

    Article  CAS  Google Scholar 

  • Eisner T, Ziegler R, McCormick L, Eisner M, Hoebeke ER, Meinwald J (1994) Defensive use of an acquired substance (carminic acid) by predaceous insect larvae. Experientia 50: 610–615

    Article  PubMed  CAS  Google Scholar 

  • Evans DL, Schmidt JO (1990) Insect defenses. State University Press, New York

    Google Scholar 

  • Evenhuis HH, Barbotin F (1987) Types des espèces d’Alloxystidae (Hymenoptera: Cynipoidea) de la collection Carpentier, dĂ©crits par J.J. Kieffer, avec synonymes nouveaux et une nonien novum. Bull Ann Soc R Beige Entomol 123: 211–224

    Google Scholar 

  • Feder JL (1995) The effects of parasitoids on sympatric host races ofRhagoletis pomonella(Diptera: Tephritidae). Ecology 76: 801–813

    Article  Google Scholar 

  • Fiedler K (1995) Lebenszyklen tropischer Bläulinge–von Interaktionen mit Ameisen geprägt. Rundgespr Korn Ă–kol 10: 199–214

    Google Scholar 

  • Finidori-Logli V, Bagnères AG, ClĂ©ment JL (1996) Role of plant volátiles in the search for a host by parasitoidDiglyphus isaea(Hymenotera: Eulophidae). J Chem Ecol 22: 541–558

    Article  CAS  Google Scholar 

  • Freeland B (1986) Arms races and covenants: the evolution of parasite communities. In: Kikkawa J, Anderson DJ (eds) Community ecology: pattern and process. Blackwell, Oxford, pp 289–303

    Google Scholar 

  • Freese A (1995) Die Phytophagenfauna ausgewählter europäischer Anthemideen: Eine vergleichende Analyse zu Gildenstruktur und Ressourcennutzung unter besonderer BerĂĽcksichtigung der Wirtspflanzenevolution. Agrarökologie 16: 1–153

    Google Scholar 

  • Freese G (1995) Structural refuges in two stem-boring weevils onRumex crispus. Ecol Entomol 20: 351–358

    Article  Google Scholar 

  • Fung SY, Herrebout WM, Verpoorte R, Fischer FC (1988) Butenolides in small ermine moths,Yponomeutaspp. (Lepidoptera: Yponomeutidae), and spindle-tree,Euonymus europaeus(Celastraceae). J Chem Ecol 14: 1099–1111

    Article  CAS  Google Scholar 

  • Gauld ID, Bolton B (1987) The Hymenoptera. Oxford University Press, Oxford

    Google Scholar 

  • Geier P (1963) The life history of codling moth,Cydia pomonellain the Australian capital territory. Aust J Zool 11: 323–367

    Article  Google Scholar 

  • Gerling DH, Roitberg BD, Mackauer M (1990) Instar-specific defense of the pea aphid,Acyrthosiphon pisum: influence on oviposition success of the hymenopterous parasiteAphelinus asychis. J Insect Behav 3: 501–514

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids. Behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Graham MWR de V (1969) The Pteromalidae of north western Europe (Hymenoptera,Chalcidoidea). Bull Br Mus (Nat Hist) Entomol Suppl 16, 897 pp

    Google Scholar 

  • Gross P (1993) Insect behavioural and morphological defenses against parasitoids. Annu Rev Entomol 38: 251–273

    Article  Google Scholar 

  • Harborne JB (1993) Advances in chemical ecology. Nat Prod Rep 10: 327–348

    Article  CAS  Google Scholar 

  • Harcourt DC (1971) Population dynamics ofLeptinotarsa decemlineata. Can Entomol 103: 1049–1061

    Article  Google Scholar 

  • Hassell MP (1976) Arthropod predator-prey-systems. In: May RM (ed) Theoretical ecology. Blackwell, Oxford, pp 71–93

    Google Scholar 

  • Hassell MP, May R (1973) Stability in insect host-parasite models. J Anim Ecol 42: 693–726

    Article  Google Scholar 

  • Hawkins BA (1994) Pattern and process in host-parasitoid interactions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hawkins BA, Sheehan WH (1994) Parasitoid community ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hefetz A (1987) The role of Dufour’s gland secretion in bees. Physiol Entomol 12: 243–253

    Article  CAS  Google Scholar 

  • Hermann HR (1984) Defensive mechanisms in social insects. Praeger, New York

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Holz C, Streil G, Dettner K, Dötemeyer J, Boland W (1994) Intersexual transfer of a toxic terpenoid during copulation and its paternal allocation to developmental stages: Quantification of cantharidin in cantharidin-producing Oedemerids (ColeĂłptera: Oedemeridae) and canthariphilous Pyrochroids (ColeĂłptera: Pyrochroidae). Z Naturforsch 49c: 856–864

    Google Scholar 

  • Hopke J, Donath J, Blechert J, Boland W (1994) Herbivore-induced volátiles: the emission of acyclic homoterpenes from leaves ofPhaseolus lunatusandZea mayscan be triggered by a Ăź-glucosidase and jasmonic acid. FEBS Lett 352: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Howard RW, Akre RD (1995) Propaganda, crypsis, and slave-making. In: CardĂ© RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman & Hall, New York, pp 364–424

    Chapter  Google Scholar 

  • HĂĽbner G, Völkl W (1996) Behavioral strategies of aphid hyperparasitoids to escape aggression by honeydew-collecting ants. J Insect Behav 9: 143–157

    Article  Google Scholar 

  • Huth A, Dettner K, Frößl C, Boland W (1993) Feeding of xenobiotic w-phenylalkanoic acids remarkably changes the chemistry and toxicity of the defensive secretion ofOxytelus sculpturatusGrav. (ColeĂłptera: Staphylinidae: Oxytelinae). Insect Biochem Mol Biol 23: 927–935

    Article  CAS  Google Scholar 

  • Kellner RLL, Dettner K (1995) Allocation of pederin during lifetime ofPaederusrove beetles (ColeĂłptera: Staphylinidae): evidence for a polymorphism of hihrrolymph toxin. J Chem Ecol 21: 1719–1733

    Article  CAS  Google Scholar 

  • Kennedy CR (1975) Ecological animal parasitology. Blackwells Oxford

    Google Scholar 

  • Klomp H (1968) A seventeen-year study of the abundance of the pine looper. In: Southwood TRE (ed) Insect abundance. Blackwell, Oxford

    Google Scholar 

  • Kunze A, Aregullin M, Rodriguez E, Proksch P (1996) Fate of the chromene encecalin in the interaction ofEncelia farinosaand its specialized herbivoreTrirhabda geminata. J Chem Ecol 22: 491–498

    Article  CAS  Google Scholar 

  • L’Empereur KM, Stermitz FR (1990) Iridoid glycoside metabolism and sequestration byPoladryas minuta(Lepidoptera: Nymphalidae) feeding onPenstemon virgatus(Scrophulariaceae). J Chem Ecol 16: 1495–1506

    Article  Google Scholar 

  • Letourneau DK (1990) Code of ant-plant mutualism broken by parasite. Science 248: 215–217

    Article  PubMed  CAS  Google Scholar 

  • Loon JJA van (1996) Chemosensory basis of feeding and oviposition behaviour in herbivorous insects: a glance at the periphery. Entomol Exper Appi 80: 7–13

    Article  Google Scholar 

  • Lorenz M, Boland W, Dettner K (1993) Biosynthesis of iridodials in the defensive glands of beetle larvae (Chrysomelinae). Angew Cham Int Ed 32: 912–914

    Article  Google Scholar 

  • Loughrin JH, Manukion A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci 91: 11836–11840

    Article  PubMed  CAS  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mackauer M, Völkl W (1993) Regulation of aphid populations by aphidiid wasps: does aphidiid foraging behaviour or hyperparasitism limit impact? Oecologia 94: 339–350

    Article  Google Scholar 

  • MacKintosh C, MacKintosh RW (1994) Inhibitors of proteins kinases and phosphates. TIBS 19: 444–448

    PubMed  CAS  Google Scholar 

  • Majerus MEN (1994) Ladybirds. Harper Collins, London

    Google Scholar 

  • Malcolm SB (1989) Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid. J Chem Ecol 15: 1699–1716

    Article  CAS  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1994) Induction of parasitoid attracting synomone in brussel sprout plants by feeding ofPieris brassicaelarvae: role of mechanical damage and herĂźivore elicitor. J Chem Ecol 20: 2229–2247

    Article  CAS  Google Scholar 

  • McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J Chem Ecol 20: 3039–3050

    Article  CAS  Google Scholar 

  • McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton(Gossypium hirsutumL.) seedlings. J Chem Ecol 20: 3039–3050

    Article  CAS  Google Scholar 

  • Mendel Z, Zegelmann L, Hassner A, Assael F, Harel M, Tam S, Dunkelblum E (1995) Outdoor attractancy of males ofMatsucoccus josephi(Homoptera: Matsucoccidae) andElatophilus hebraicus(Hemiptera: Anthocoridae) to the synthetic female sex pheromone ofM. josephi. JChem Ecol 21: 331–341

    Article  CAS  Google Scholar 

  • Metealf RO, Metealf ER (1992) Plant kairomones in insect ecology and control. Chapman & Hall, New York, 168 pp

    Google Scholar 

  • Michaelis H (1984) Struktur- und Funktionsuntersuchungen zum Nahrungsnetz in den BlĂĽtenköpfen vonCirsium arvense. PhD Thesis, University of Bayreuth, Bayreuth

    Google Scholar 

  • Mikkola K (1991) The conservation of insects and their habitats in northern and eastern Europe. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 109–119

    Google Scholar 

  • Morin PJ, Lawler SP (1995) Food web architecture and population dynamics: theory and empirical evidence. Annu Rev Ecol Syst 26: 505–529

    Article  Google Scholar 

  • Mullin CA (1986) Adaptive divergence of chewing and sucking arthropods to plant allelochemicals. In: Brattsten LB, Ahmad S (eds) Molecular aspects of insect-plant associations. Plenum Press, New York, pp 175–209

    Google Scholar 

  • Nishida R, Fukami H (1989) Host plant iridoid-based chemical defense of an aphid,Acyrthosiphon nipponicus, against ladybird beetles. J Chem Ecol 15: 1837–1845

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H (1990) Sequestration of distasteful compounds by some pharmacophagoĂĽs insects. J Chem Ecol 16: 151–164

    Article  CAS  Google Scholar 

  • Nishida R, Fukami H, Miyata T, Takeda M (1989) Clerodendrins: feeding stimulants for the adult turnip säwfly,Athalia ruficornis, fromClerodendron trichotomum(Verbenaceae). Agrie Biol Chem 53: 1641–1645

    Article  CAS  Google Scholar 

  • Novak H (1994) The influence of an attendance on larval parasitism in hawthorn psyllids (Homoptera: Psyllidae). Oecologia 99: 72–78

    Article  Google Scholar 

  • Oldham NJ, Boland W (1996) Chemical ecology: multifunctional compounds and multitrophic interactions. Naturwissenschaften 83: 248–254

    Article  CAS  Google Scholar 

  • Pasteeis JM (1978) Apterous and brachypterous coccinellids at the end of the food chain,Cionura erecta(Asclepiadaceae)-Ap/zzsnerii. Entomol Exp Appi 24: 379–384

    Google Scholar 

  • Pasteeis JM, GrĂ©goire JC, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Annu Rev Entomol 28: 263–289

    Article  Google Scholar 

  • PasteĂ©is JM, Rowell-Rahier M, Braekman JC, Daloze D (1984) Chemical defence in leaf beetles and their larvae: the ecological, evolutionary and taxonomie significance. Biochem Syst Ecol 12: 395–406

    Article  Google Scholar 

  • PasteĂ©is JM, Rowell-Rahier M, Raupp MJ (1988) Plant-derived defense in chrysomelid beetles. In: Barbosa P, Letourneau DK (eds) Novel aspects of insect-plant interactions. Wiley, New York, pp 235–272

    Google Scholar 

  • PasteĂ©is JM, Dobler S, Rowell-Rahier M, Ehmke A, Hartmann T (1995) Distribution of autogenous and host-derived chemical defenses inOreinaleaf beetles (ColeĂłptera: Chrysomelidae). J Chem Ecol 21: 1163–1179

    Article  Google Scholar 

  • Paul VJ (1992) Ecological roles of marine natural products. Comstock, Ithaca, 245 pp

    Google Scholar 

  • Pietra F (1990) A secret world–natural products of marine life. Birkhäuser, Basel, 279 pp

    Google Scholar 

  • Pimm SL (1982) Food webs. Chapman & Hall, London

    Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350: 669–674

    Article  Google Scholar 

  • Polis GA, Winemiller KO (eds) (1996) Food webs. Integration of patterns and dynamics. Chapman & Hall, London

    Google Scholar 

  • Powell JR (1978) The founder-flush speciation theory. Evolution 32: 464–474

    Article  Google Scholar 

  • Prestwich GD (1984) Defensive mechanisms of termites. Annu Rev Entomol 29: 201–232

    Article  CAS  Google Scholar 

  • Price PW (1980) Evolutionary ecology of parasites. Plenum Press, New York

    Google Scholar 

  • Price PW (1986) Ecological aspects of host plant resistance and biological control: interactions among three trophic levels. In: Boethel DJ, Eikenbary RD (eds) Interactions of plant resistance and parasitoids and predators of insects. Elis Horwood, New York, pp 11–29

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11: 41–64

    Article  Google Scholar 

  • Ramachandran R, Norris DM (1991) Volátiles mediating plant-herbivore-natural-enemy interactions: electroantennogram responses of soybean looper,Pseudoplusia mcludens, and a parasitoidMicroplitis demolitor, to green leaf volátiles. J Chem Ecol 17: 1665–1690

    Article  CAS  Google Scholar 

  • Redfern M, Cameron RAD (1978) Population dynamics of the yew gall midgeTaxomya taxi. Ecol Entomol 3: 251–262

    Article  Google Scholar 

  • Reed HC, Tan SH, Haapanen K, Killmon M, Reed DK, Elliott NC (1995) Olfactory responses of the parasitoidDiaeretiella rapae(Hymenoptera: Aphidiidae) to odor of plants, aphids, and plant-aphid complexes. J Chem Ecol 21: 407–418

    Article  CAS  Google Scholar 

  • Roff DA (1992) The evolution of life histories–theory and analysis. Chapman & Hall, London

    Google Scholar 

  • Roitberg BD, Isman MB (1992) Insect chemical ecology–an evolutionary approach. Chapman & Hall, New York

    Google Scholar 

  • Romstöck-Völkl M (1990) Host refuges and spatial patterns of parasitism in an endophytic host-parasitoid system. Ecol Entomol 15: 321–331

    Article  Google Scholar 

  • Romstöck-Völkl M, Wissel C (1989) Spatial and seasonal patterns in the egg distribution ofTephritis conuraLoew (Diptera: Tephritidae). Oikos 55: 165–174

    Article  Google Scholar 

  • Rosenthal GA, Berenbaum MR (1992) Herbivores–their interactions with secondary plant metabolites, vols I-II. Academic Press, San Diego

    Google Scholar 

  • Rothschild M (1985) British aposematic Lepidoptera. In: Heath J, Emmet AM (eds) The moths and butterflies of Great Britain and Ireland. Harley, Essex, pp 9–62

    Google Scholar 

  • Rothschild M, Euw J, Reichstein T (1973) Cardiac glycosides in a scale insect(Aspidiotus), a ladybird(Coccinella)and a lacewing(Chrysopa). J Entomol 48: 89–90

    CAS  Google Scholar 

  • Rowell-Rahier M, PasteĂ©is JM (1992) Third trophic level influences of plant allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores–their interactions with secondary plant metabolites, vol II. Academic Press, San Diego, pp 243–277

    Google Scholar 

  • Schaffner U, BoevĂ© L, Gfeller H, Schlunegger UP (1994) Sequestration ofVeratrumalkaloids by specialistRhadinoceraea nodicornisKonow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20: 3233–3250

    Article  CAS  Google Scholar 

  • Schantz EJ (1971) The dinoflagellate poisons. In: Kadis S, Ciegler A, Aji SJ (eds) Microbial Toxins, vol VII. Academic Press, New York, pp 3–26

    Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large. Ecology 70 (6): 1559–1589

    Article  Google Scholar 

  • Shenolikar S (1994) Protein serin/threonine phosphatases–new avenues for cell regulation. Annu Rev Cell Biol 10: 55–86

    Article  PubMed  CAS  Google Scholar 

  • Shepard M, Dahlman DL (1988) Plant-induced stresses as factors in natural enemy efficacy. In: Heinrichs EA (ed) Plant-stress-insect interactions. Wiley, New York, pp 363–379

    Google Scholar 

  • Smith BH, Breed MD (1995) The chemical basis of nestmate recognition and mate discrimination in social insects. In: CardĂ© RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman & Hall, New York, pp 287–317

    Chapter  Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108: 499–506

    Article  Google Scholar 

  • Stary P (1977) Dercdrocerws-hyperparasites of aphids in Czechoslovakia (Hymenoptera: Ceraphronoidea). Acta Entomol Bohemoslov 74: 1–9

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stechmann DH, Völkl W, Stary P (1996) Ants as a critical factor in the biological control of the banana aphidPentalonia nigronervosain Oceania. J Appi Entomol 120: 119–123

    Article  Google Scholar 

  • Stowe MK (1988) Chemical mimicry. In: Spencer KC (ed) Chemical mediation of coevolution. Academic Press, San Diego, pp 513–580

    Google Scholar 

  • Sudd JH (1987) Ant aphid mutualism. In: Minks AK, Harrewijn P (eds) Aphids. Their biology, natural enemies and control, vol 2A. Elsevier, Amsterdam, pp 355–365

    Google Scholar 

  • Szentesi A, Wink M (1991) Fate of quinolizidine alkaloids through three trophic levels:Laburnum anagyroides(Leguminosae) and associated organisms. J Chem Ecol 17: 1557–1573

    Article  CAS  Google Scholar 

  • Trigo JR, Witte L, Brown KS, Hartmann T, Barata LES (1993) Pyrrolidine alkaloids in the arctiid mothHyalurga syma. J Chem Ecol 19: 669–679

    Article  CAS  Google Scholar 

  • Turchin P, Kareiva P (1989) Aggregation inAphis varians: an effective strategy for reducing predation risk. Ecology 70: 1008–1016

    Article  Google Scholar 

  • Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH (1993a) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19: 411–425

    Article  CAS  Google Scholar 

  • Turlings TCJ, Wäckers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993b) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (eds) Insect learning: ecology and evolutionary perspectives. Chapman & Hall, New York, pp 51–78

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemicals used by natural enemies in a tritrophic context. Annu Rev Entomol 37: 141–172

    Article  Google Scholar 

  • VitĂ© JP, Francke W (1985) Waldschutz gegen Borkenkäfer: vom Fangbaum zur Falle. Chem Unserer Zeit 19: 11–21

    Article  Google Scholar 

  • Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 61: 273–281

    Article  Google Scholar 

  • Völkl W (1995) The exploitation of ant-attended resources by the coccinellidPlatynaspis luteorubra: patterns and benefits. J Insect Behav 8: 653–670

    Article  Google Scholar 

  • Völkl W, Stadler B (1996) Colony orientation and successful defence behaviour in the conifer aphid,Schizolachnus pineii. Entomol Exp Appi 78: 197–200

    Article  Google Scholar 

  • Von Nickisch-Rosenegk E, Schneider D, Wink M (1990) Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth,Creatonotos transiens. Z Naturforsch 45c: 881–894

    Google Scholar 

  • Warren PH, Lawton JH (1987) Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74: 231–235

    Article  Google Scholar 

  • Way MJ (1954) Studies on the association of the ant,Oecophylla longinoda(Latr.) (Formicidae) with the scale insectSaissetia zanzibarensisWilliams (Coccidae). Bull Entomol Res 45: 113–154

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8: 307–344

    Article  Google Scholar 

  • Weis AE (1983) Pattern of parasitism byTorymus capiteon its host distributed in small patches. J Anim Ecol 52: 867–878

    Article  Google Scholar 

  • Wheeler JW, Duffield RM (1988) Pheromones of Hymenoptera and Isoptera. In: Morgan ED, Mandava NB (eds) CRC Handbook of natural pesticides, vol IV. Pheromones, part B. CRC Press, Boca Raton, pp 59–206

    Google Scholar 

  • Whitman DW (1990) Grasshopper chemical communication. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New York, pp 357–391

    Google Scholar 

  • Williams HJ, Elzen GW, Vinson SB (1988) Parasitoid-host-plant interactions emphasizing cotton(Gossypium). In: Barbosa P, Letourneau DK (eds) Novel aspects of insect-plant interactions. Wiley, New York, pp 171–200

    Google Scholar 

  • Wilson EO (1970) Chemical communication within animal species. In: Sondheimer E, Simeone JB (eds) Chemical ecology. Academic Press, New York, pp 133–155

    Google Scholar 

  • Winemiller KO, Polis GA (1996) Food webs: what do they tell us about the world? In: Polis GA, Winemiller KO (eds) Food webs. Integration of patterns and dynamics. Chapman & Hall, London, pp 1–22

    Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appi Genet 75: 225–233

    Article  CAS  Google Scholar 

  • Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays E (ed) Insect-plant interactions, vol IV. CRC Press, Boca Raton, pp 131–166

    Google Scholar 

  • Wink M, Montllor CB, Bernays EA, Witte L (1991)Uresiphita reversalis (Lepidoptera: Pyralidae): carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plantTeline monspessulana. Z Naturforsch 46c: 1080–1088

    CAS  Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids. Naturwissenschaften 77: 540–543

    Article  CAS  Google Scholar 

  • Witz BW (1990) Antipredator mechanisms in arthropods: a twenty year literature survey. Fla Entomol 73: 71–99

    Article  Google Scholar 

  • Yasumoto T, Murata M (1993) Marine toxins. Chem Rev 93: 1897–1944

    CAS  Google Scholar 

  • Zwölfer H (1968) Untersuchungen zur biologischen Bekämpfung vonCentaurea solstitialisL. Strukturmerkmale der Wirtspflanze als Auslöser des Eiablageverhaltens vonUrophora sirunaseva(Hg.) (Dipt, Trypetidae). Z Angew Entomol 61: 119–130

    Article  Google Scholar 

  • Zwölfer H (1982) Life systems and strategies of resource exploitation in Tephritids. In: Cavalloro R (ed) Fruit flies of economic importance. Proc CEC/IOBC Int Symp Balkema, Rotterdam, pp 16–30

    Google Scholar 

  • Zwölfer H (1986) Insektenkomplexe an Disteln–ein Modell fĂĽr die Selbstorganisation ökologischer Kleinsystems. In: Dress A, Hendrichs H, KĂĽppers G (eds) Selbstorganisation. Die Entstehung von Ordnung in Natur und Gesellschaft. Piper, MĂĽnchen, pp 181–217

    Google Scholar 

  • Zwölfer H (1987) Species richness, species packing, and evolution in insect-plant systems. In: Schulze E-D, Zwölfer H (eds) Potentials and limitations of ecosystem analysis. Ecological studies, vol 61. Springer, Berlin Heidelberg New York, pp 301–319

    Google Scholar 

  • Zwölfer H (1988) Evolutionary and ecological relationships among the insect fauna of thistles. Annu Rev Entomol 33: 103–122

    Article  Google Scholar 

  • Zwölfer H (1994) Structure and biomass transfer in food webs: stability, fluctuations, and network control. In: Schulze ED (ed) Flux control in ecological systems. Academic Press, San Diego, pp 365–419

    Google Scholar 

  • Zwölfer H, Arnold-Rinehart J (1993) The evolution of interactions and diversity in plant-insect systems: theUrophora-Eurytomafood web in galls on Palearctic Cardueae. Ecological studies, vol 99. Springer, Berlin Heidelberg New York, pp 211–233

    Google Scholar 

  • Zwölfer H, Arnold-Rinehart J (1994) Parasitoids as a driving force in the evolution of the gall size ofUrophorain Cardueae hosts. In: Williams MAJ (ed) Plant galls. Clarendon Press, Oxford, pp 245–257

    Google Scholar 

  • Zwölfer H, Schlumprecht H (1993) Resource utilization, populations structure and population dynamics ofUrophora carduiL. (Dipt.: Tephritidae), a gall former in stems ofCirsium arvense. In: den Boer PJ, Mols PJM, Szyszko J (eds) Dynamics of populations. Proc Meet of Population problems. Agricultural University Warsaw, Warsaw, pp 55–58

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dettner, K., Bauer, G., Völkl, W. (1997). Evolutionary Patterns and Driving Forces in Vertical Food Web Interactions. In: Dettner, K., Bauer, G., Völkl, W. (eds) Vertical Food Web Interactions. Ecological Studies, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60725-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60725-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64528-0

  • Online ISBN: 978-3-642-60725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics