Skip to main content

Impacts of Potential Climate Change on Global and Regional Food Production and Vulnerability

  • Conference paper
Climate Change and World Food Security

Part of the book series: NATO ASI Series ((ASII,volume 37))

Abstract

Since the late 1950s, global agricultural output has increased on a scale unprecedented in human history. Much of the productivity increase is attributed to the development of high yielding crop varieties, intensive use of inorganic fertilisers and pesticides, irrigation expansion and capital intensive farm management. In the 1970s the euphoria surrounding the Green Revolution was questioned in the wake of the energy crisis and growing awareness of long-term environmental consequences. Soil erosion, ground water contamination, soil compaction and decline of natural soil fertility, and destruction of traditional social systems, led to a reappraisal of what were still considered to be the most advanced agricultural production techniques. Agricultural research has since expanded its scope to include sustainable and resource-efficient cropping systems and farm management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.M., Fleming, R.A., Chang, C., McCarl, B.A. and Rosenzweig, C. (1993). A Reassessment of the Economic Effects of Global Climate Change on U.S. Agriculture. Oregon State University, Corvallis.

    Google Scholar 

  • Adams, R.M., Rosenzweig, C., Peart, R.M., Ritchie, J.T., McCarl, B.A., Glyer, J.D., Curry, R.B., Jones, J.W., Boote, K.J. and Allen, L.H. Jr. (1990). Global climate change in US agriculture. Nature, 345(6272): 219–224.

    Article  Google Scholar 

  • Allen, L.H., Jr., Boote, K.J., Jones, J.W., Jones, P H., Valle, R.R., Acock, B., Rogers, H.H., and Dahlman, R.C. (1987). Response of vegetation to rising carbon dioxide: Photosynthesis, biomass and seed yield of soybean. Global Biogeochemical Cycles 1:1–14.

    Article  Google Scholar 

  • Appendini, K. and Liverman, D. (1994). Agricultural policy, climate change and food security in Mexico. Food Policy, 19(2): 149–164.

    Article  Google Scholar 

  • Appendini, K. and Liverman, D. (1995). Agricultural policy and climate change in Mexico. In: Downing, T.E. (ed.) Climate Change and World Food Security. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Chen, R.S. and Kates, R.W. (1994). World Food Security: Prospects and Trends. Food Policy, 19(2): 192–208.

    Article  Google Scholar 

  • Chen and Kates (1995). Towards a Food Secure World: Prospects and Trends. In: Downing, T.E. (ed.) Climate Change and World Food Security. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Cure, J.D. and Acock, B. (1986). Crop responses to carbon dioxide doubling: A literature survey. Agriculture and Forest Meteorology, 38: 127–145.

    Article  Google Scholar 

  • FAO/UNFPA/IIASA (1983). Potential Population Supporting Capacity of Lands in the Developing World, FAO, Rome.

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1984). Fourth World Food Survey, FAO, Rome.

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1987). Fifth World Food Survey, FAO, Rome.

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1988). World Agriculture Toward 2000, FAO, Rome.

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1993). Agriculture: Towards 2010, FAO, Rome.

    Google Scholar 

  • FAO (Food and Agriculture Organisation) (1994). Global Climate Change and Agricultural Production. Highlights from and expert consultation. FAO, Rome.

    Google Scholar 

  • Fischer G., Frohberg K., Keyzer M.A., and Parikh K.S. (1988). Linked National Models: A Tool for International Policy Analysis. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Fischer G., Frohberg K., Keyzer M.A., Parikh K.S., and Tims W. (1990). Hunger — Beyond the Reach of the Invisible Hand. IIASA, Laxenburg.

    Google Scholar 

  • Godwin, D., Ritchie, J.T., Singh, U. and Hunt, L. (1989). A User’s Guide to CERES-Wheat V2.10. International Fertilizer Development Center, Muscle Shoals.

    Google Scholar 

  • Godwin, D., Singh, U., Ritchie, J.T. and Alocilja, E.C. (1993). A User’s Guide to CERES Rice. International Fertilizer Development Center, Muscle Shoals.

    Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L. (1983). Efficient three-dimensional global models for climate studies: Models I and II. Monthly Weather Review, 111(4): 609–662.

    Article  Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Rind, D., Russell, G., Lebedeff, S., Ruedy, R. and Stone, P. (1988). Global climate changes as forecast by the GISS 3-D model. Journal of Geophysical Research, 93(D8) 9341–9364.

    Article  Google Scholar 

  • Hendry, G.R., Lewis, K.F. and Nagy, J. (1993). Free air carbon dioxide enrichment: development, progress, results. In: J. Rozema, H. Lambers, S.C. van de Geijn, and M.L. Cambridge (eds). CO 2 and Biosphere. Kluwer Academic Publishers, Dordrecht, pp. 17–31.

    Chapter  Google Scholar 

  • International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project (1989) Decision Support System for Agrotechnology Transfer Version 2.1 (DSSAT V2.T). Department of Agronomy and Soil Science. College of Tropical Agriculture and Human Resources. University of Hawaii, Honolulu, H.I

    Google Scholar 

  • Houghton, J.T., Callander, B.A. and Varney, S.K. (eds.) (1992). Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge. 200 pp

    Google Scholar 

  • Houghton, J.T., Jenkins, G.J. and Ephraums, J.J. (eds.) (1990). Climate Change: The IPCC Scientific Assessment. Cambridge University Press. Cambridge.

    Google Scholar 

  • Houghton, J.T., Meira Filho, L.G., Bruce, J., Lee, H, Callander, B.A., Haites, E., Harris, N. and Maskell, K. (eds.) (1995). Climate Change 1994. Radiative Forcing of Climate Change and An Evaluation of the IPCC 1992 Emission Scenarios. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kellogg, WW. and Zhao, Z.-C. (1988). Sensitivity of soil moisture to doubling of carbon dioxide in climate model experiments. Part 1. North America. Journal of Climate, 1: 348–366.

    Google Scholar 

  • Kimball, B.A. (1983). Carbon dixoide and agricultural yield. An assemblage and analysis of 430 prior observations. Agronomy Journal, 75: 779–788.

    Article  Google Scholar 

  • Jones, C.A. and Kiniry, J.R. (1986). CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A & M Press, College Station.

    Google Scholar 

  • Jones, J.W, Boote, K.J., Hoogenboom, G., Jagtap, S.S. and Wilkerson, G.G. (1989). SOYGRO V5.42: Soybean Crop Growth Simulation Model. User’s Guide. Department of Agricultural Engineering and Department of Agronomy. University of Florida, Gainesville.

    Google Scholar 

  • Liverman, D., Dilley, M., O’Brien, K. and Menchaca, L. (1994). Possible Impacts of Climate Change on Maize Yields in Mexico. Implications of Climate Change for International Agriculture: Crop Modeling Study. U.S. Environmental Protection Agency, EPA 230B–94–003, Washington DC.

    Google Scholar 

  • Manabe, S. and Wetherald, R.T. (1987). Large-scale changes in soil wetness induced by an increase in CO2. Journal of Atmospheric Science, 44: 1211–1235.

    Article  Google Scholar 

  • Menzhulin, G.V., Koval, L A. and Badenko, A.L. (1994). Potential Effects of Global Warming and Carbon Dioxide on Wheat Production in the Former Soviet Union. Implications of Climate Change for International Agriculture: Crop Modeling Study. USEPA EPA 230B-94–003, Washington DC.

    Google Scholar 

  • Otter-Nacke, S., Godwin, D.C. and Richie, J.T. (1986). Testing and Validating the CERES-Wheat Model in Diverse Environments. AgGRISTARS YM-15–00407. Johnson Space Center No. 20244, Houston.

    Google Scholar 

  • Parikh K.S., Fischer, G., Frohberg, K., and Gulbrandsen, O. (1988). Toward Free Trade in Agriculture. Martinus Nijhoff, The Hague.

    Google Scholar 

  • Parry, M.L., Carter, T.R. and Konijn, NT. (eds.) (1988). The impact of climate variations on agriculture. Vol. 1 Assessments in cool temperate and cold regions. Vol. 2 Assessments in semi-arid regions. Kluwer, Dordrecht.

    Google Scholar 

  • Pearman, G. (1988). Greenhouse: Planning for Climate Change. CSIRO, Canberra.

    Google Scholar 

  • Peart, R.M., Jones, J.W., Curry, R.B., Boote, K. and Allen, L.H. Jr. (1989). Impact of climate change on crop yield in the southeastern U.S.A. In: J.B. Smith and D.A. Tirpak (eds.), The Potential Effects of Global Climate Change on the United States. U.S. Environmental Protection Agency, Washington DC.

    Google Scholar 

  • Ritchie, J.T. and Otter S. (1985). Description and performance of CERES-Wheat. A user oriented wheat yield model. In. W.O. Willis (ed.) ARS Wheat Yield Project. Department of Agriculture, Agricultural Research Service, ARS-38, Washington D.C.

    Google Scholar 

  • Ritchie, J.T., Singh, U., Godwin, D. and Hunt, L. (1989). A User’s Guide to CERES-Maize V2.10. International Fertilizer Development Center, Muscle Shoals.

    Google Scholar 

  • Rogers, H.H., Bingham, G.E., Cure, J.D., Smith, J.M. and Surano, K.A. (1983). Responses of selected plant species to elevated carbon dioxide in the field. Journal of Environmental Quality, 12: 569–574.

    Article  Google Scholar 

  • Smith, J.B. and Tirpak, D.A. (eds.) (1989). The Potential Effects of Global Climate Change on the United States. Report to Congress. EPA-230–05–89–050. U.S. Environmental Protection Agency, Washington D.C.

    Google Scholar 

  • Tegart, W.J. McG., G.W. Sheldon, and D.C. Griffiths (eds.) (1990) Climate Change: The IPCC Impacts Assessment. Australian Government Publishing Service, Canberra.

    Google Scholar 

  • UK Department of the Environment (1991). The Potential Effects of Climate Change in the United Kingdom. Climate Change Impacts Review Group. HMSO, London.

    Google Scholar 

  • UN (1989). World Population Prospects 1988. United Nations, New York.

    Google Scholar 

  • Wilson, C.A. and Mitchell, J.F.B. (1987). A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. Journal of Geophysical Research, 92 (13): 315–343.

    Google Scholar 

  • World Bank (1990). World Population Projections 1989–90 Edition. Johns Hopkins University Press, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, G., Frohberg, K., Parry, M.L., Rosenzweig, C. (1996). Impacts of Potential Climate Change on Global and Regional Food Production and Vulnerability. In: Downing, T.E. (eds) Climate Change and World Food Security. NATO ASI Series, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61086-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61086-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64687-4

  • Online ISBN: 978-3-642-61086-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics