Skip to main content

Spontaneous Knockout of CSF-1 Gene in the Mouse as a Model to Study the Organization of the Macrophage System

  • Conference paper
Gene Technology

Part of the book series: NATO ASI Series ((ASIH,volume 94))

  • 127 Accesses

Abstract

Physiological role of many molecules and cells can be investigated by evaluating animals possessing genetically determined alterations in the production of those molecules and/or cells. While animals with either knockouts of genes for various molecules or transgenic for these molecules could be at present experimentally created, there is still not fully explored potential of natural mutants, the so called “experiments of nature”(Good, 1991). In particular, there are several natural mutants with osteopetrosis: a disorder of osteoclasts i e cells related to macrophages, and they all may have alterations in other parts of the macrophage system (Wiktor-Jedrzejczak et al. , 1981, Marks 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DO, Hamilton TA (1992) Molecular basis of macrophage activation: diversity and its origins. In: Lewis CE, McGee JOD (eds) The Natural Immune System: The Macrophage. IRL Press, Oxford, pp75–114

    Google Scholar 

  • Auger MJ, Ross JA (1992) The biology of the macrophage. In: Lewis CE, McGee JOD (eds) The Natural Immune System: The Macrophage. IRL Press, Oxford,pp2–74

    Google Scholar 

  • Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER (1987) Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci USA 84:6179–6183

    Article  PubMed  CAS  Google Scholar 

  • Begg SK, Radley JM, Pollard JW, Chisholm OT, Stanley ER, Bertoncello I (1993) Delayed hematopoietic development in osteopetrotic (op/op) mice. J Exp Med 177:237–242

    Article  PubMed  CAS  Google Scholar 

  • Bertoncello I, Bradley TR, Hodgson GS, Dumlop JM (1991) The resolution, enrichment, and organization of normal bone marrow high proliferative potential colony-forming cell subsets on the basis of rhodamine-123 fluorescence. Exp Hematol 19:17

    Google Scholar 

  • Bradley TRf Hodgson GS(1979) Detection of primitive macrophage progenitor cells in bone marrow. Blood 54:1446–1450

    PubMed  CAS  Google Scholar 

  • Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, Chisholm 0, Hofstetter W, Pollard JW, Stanley ER (1994) Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357–1372

    PubMed  CAS  Google Scholar 

  • Cheers C, Haigh AM, Kelso A, Metcalf D, Stanley ER, Young AM (1988) Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun 56:247–251

    PubMed  CAS  Google Scholar 

  • Doherty TM, Kastelein R, Menon S, Andrade S, Coffman RL (1993) Modulation of murine macrophage function by IL-13. J Immunol 151:7151–7160

    PubMed  CAS  Google Scholar 

  • Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, Mulligan RC (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–716

    Article  PubMed  CAS  Google Scholar 

  • Evans R (1991) Clarification of the potential role of CSF-1 in activation of macrophages. J Leukocyte Biol 50:316

    PubMed  CAS  Google Scholar 

  • Falk LA, Vogel SN(1988) Comparison of bone marrow progenitors responsive to granulocyte-macrophage colony stimulating factor and macrophage colony stimulating factor-1. J Leukocyte Biol 43:148–157

    PubMed  CAS  Google Scholar 

  • Felix R, Cecchini MG, Hofstetter W, Elford PR, Stutzer A, Fleisch H (1990) Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Mineral Res 5:781–789

    Article  CAS  Google Scholar 

  • Gasson JC (1991) Molecular physiology of granulocyte-macrophage colonystimulating factor. Blood 77:1131–1145

    PubMed  CAS  Google Scholar 

  • Gisselbrecht S, Sola B, Fichelson S, Bordereaux D, Tambourin P, Mattei M-G, Simon D, Guenet J-L (1989)The murine M-CSF gene is localized on chromosome 3. Blood 73:1742–1746

    PubMed  CAS  Google Scholar 

  • Good RA(1991) Experiments of nature in the development of modern immunology. Immunol Today 12:283–286

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (1986) Biology of the macrophage. J Cell Sci Suppl 4:267–286

    PubMed  CAS  Google Scholar 

  • Halenbeck R, Kawasaki E, Wrin J, Koths K (1989) Renaturation and purification of biologically active recombinat human macrophage colony-stimulating factor expressed in E. coli. Bio/Technology 7:710–715

    Article  CAS  Google Scholar 

  • Heard JM, Roussel MF, Rettenmier CW, Sherr CJ (1987) Synthesis, posttranslational processing, and autocrine transforming activity of a carboxylterminal truncated form of colony stimulating factor-1. Oncogene Res 1:423–440

    PubMed  CAS  Google Scholar 

  • Ihle JN, Weinstein Y (1986) Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin 3. Adv Immunol 39:1–49

    Article  PubMed  CAS  Google Scholar 

  • Johnson RB Jr (1993)Monocytes and macrophages. In Lachmann PJ, Peters K, Rosen FS, Walport MJ (eds)Clinical Aspects of Immunology. Blackwell, Boston, Vol.1,pp467–479

    Google Scholar 

  • Kalinski P, Urbanowska E, Kawiak J, Hoser G, Aukerman SL, Wiktor-Jedrzejczak W (1993) CSF-1 dependent but not GM-CSF dependent macrophages recruit lymphocytes to peritoneal cavity. Exp Hematol 21:1014

    Google Scholar 

  • Kodama H, Yamasaki A, Nose M, Nijda S, Ohgame Y, Abe M, Kumegawa M, Suda T (1991) Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173:269–272

    Article  PubMed  CAS  Google Scholar 

  • Koike K, Stanley ER, Ihle JN, Ogawa M (1986)Macrophage colony formation supported by purified CSF-1 and/or interleukin 3 in serum-free culture: evidence for hierarchical difference in macrophage colony-forming cells. Blood 67:859–8

    PubMed  CAS  Google Scholar 

  • Ladner MB, Martin GA, Noble JA, Nikoloff DM, Tal R, Kawasaki ES, White TJ (1987) Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J 6:2693–2698

    PubMed  CAS  Google Scholar 

  • Lieschke GJ, Stanley E, Grail D, Hodgson G, Sinickas V, Gall JAM, Sinclair RA, Dunn RA (1994) Mice lacking both macrophage- and granulocyte-macrophage colony stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood 84:27–35

    PubMed  CAS  Google Scholar 

  • Marks SC Jr (1982) Morphological evidence of reduced bone resorption in osteopetrotic (op) mice. Am J Anat 163:157–167

    Article  PubMed  Google Scholar 

  • Marks SC Jr (1987) Osteopetrosis: multiple pathways for the interception of osteoclast function. Appl Pathol 5:172–183

    PubMed  Google Scholar 

  • Marks SC Jr, Lane PW(1976)Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered 67:11–18

    PubMed  Google Scholar 

  • Metcalf D(1991) Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 254:529–533

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Nicola NA (1992) The clonal proliferation of normal mouse hematopoietic cells: enhancement and suppression by colony-stimulating factor combinations. Blood 79:2861–2866

    PubMed  CAS  Google Scholar 

  • Miyajima A, Kitamura T, Harada N, Yokota T, Arai K-i (1992)Cytokine receptors and signal transduction. Annu Rev Immunol 10:295–331

    Article  PubMed  CAS  Google Scholar 

  • Naito M, Hayashi S-I, Yoshida H, Nishikawa S-I, Shultz LD, Takahashi K (1991) Abnormal differentiation of tissue macrophage populations in ’osteopetrosis’ (op) mice defective in the production of macrophage colony-stimulating factor. Am J Pathol 139:657–667

    PubMed  CAS  Google Scholar 

  • Nathan C, Cohn ZA(1985)Cellular components of inflammation: monocytes and macrophages. In: Kelley WN, Harris ED Jr, Ruddy S, Sledge CB(eds) Textbook of Rheumatology. 2nd Ed. WB Saunders, Philadelphia, pp 144–169

    Google Scholar 

  • Prystowsky IB, Otten G, Naujokas MF, Vardiman J, Ihle JN, Goldwasser E, Fitch FW (1984) Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3. Am J Pathol 117:171–179

    PubMed  CAS  Google Scholar 

  • Shibata Y, Bjorkman DR, Schidt M, Oghiso Y, Volkman A (1994) Macrophage colony-stimulating factor-induced bone marrow macrophages do not synthesize or release prostaglandin E2. Blood 83:3316–3323

    PubMed  CAS  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JAM, Maher DW, Cebon J, Sinickas V, Dunn AR (1994)Granulocyte/macrophage colonystimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91:5592–5596

    Article  PubMed  CAS  Google Scholar 

  • Stanley ER(1994)Colony stimulating factor-1 (macrophage colony stimulating factor). In The Cytokine Handbook, Academic Press, New York, pp387–418

    Google Scholar 

  • Suda T, Suda J, Ogawa M (1983) Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci USA 80:6689–6693

    Article  PubMed  CAS  Google Scholar 

  • Szperl M, Urbanowska E, Ansari AA, Wiktor-Jedrzejczak W (1995) Increased resistance of macrophage-deficient, TNF-a-deficient, IL-1 a-deficient op/op mouse to endotoxin. Ann NY Acad Sci (in press)

    Google Scholar 

  • Takahashi K, Naito M, Shultz LD (1992) Differentiation of epidermal Langerhans cells in macrophage colony-stimulating-factor-deficient mice homozygous for the osteopetrosis (op) mutation. J Invest Dermatol 99:46S–47S

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Naito M, Shultz LD, Hayashi S-l, Nishikawa S-i (1993) Differentiation of dendritic cell populations in macrophage colony-stimulating factor deficient mice homozygous for the osteopetrosis (op) mutation. J Leukocyte Biol 53:19–2

    PubMed  CAS  Google Scholar 

  • Takahashi K, Naito M, Umeda S, Shultz LD (1994) The role of macrophage colonystimulating factor in hepatic glucan-induced granuloma formation in the osteopetrosis mutant mouse defective in the production of macrophage colonystimulating factor. Am J Pathol 144:1381–1392

    PubMed  CAS  Google Scholar 

  • VanFurth R(1993)Cell biology of mononuclear phagocytes. InVanFurth R(ed)Hemopoietic growth factors and mononuclear phagocytes.Karger, Basel, p

    Google Scholar 

  • VanFurth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear system. A new classification of macrophages, monocytes, and their precursor cells. Bull WHO 46:845–852

    CAS  Google Scholar 

  • Wiffeils JFAM, Derover Z, Kraal G, Beelen RHJ (1993) Macrophage phenotype regulation by colony-stimulating factors at bone marrow level. J Leukocyte Biol 53:249–255

    Google Scholar 

  • Wiktor-Jedrzejczak W (1993a)Cure of osteopetrosis in op/op mice by bone grinding and good food? Exp Hematol 21:1314–1315

    CAS  Google Scholar 

  • Wiktor-Jedrzejczak W (1993b) In vivo role of macrophage growth factors as delineated using CSF-1 deficient op/op mouse. Leukemia 7:S117–S121

    PubMed  Google Scholar 

  • Wiktor-Jedrzejczak W, Ahmed A, Szczylik C, Skelly RR (1982) Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med 156:1516–1527

    CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Ansari AA, Szperl M, Urbanowska E (1992a) Distinct in vivo functions of two macrophage subpopulations as evidenced by studies using macrophage-deficient op/op mouse. Eur J Immunol 22:1951–1954

    Article  PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832

    Article  PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Ratajczak MZ, Ptasznik A, Sell KW, Ahmed-Ansari A, Ostertag W(1992b)CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp Hematol 20:1004–10

    PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Skelly RR, Ahmed A (1981)Hematopoietic stem cell differentiation and its role in osteopetrosis. In:Gerschwin ME, Merchant B(eds) Immunologic defects in laboratory animals. Plenum Press, New York, vol. 1:

    Google Scholar 

  • Wiktor-Jedrzejczak W, Urbanowska E, Aukerman SL, Pollard JW, Stanley ER, Ralph P, Ansari AA, Sell KW, Szperl M (1991) Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Exp Hematol 19:1049–1054

    PubMed  CAS  Google Scholar 

  • Witmer-Pack MD, Hughes DA, Schuker G, Lawson L, McWilliam A, Inaba K, Steinman RM, Gordon S (1993) Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Science 104:1021–1029

    PubMed  Google Scholar 

  • Yoshida H, Hayashi S-I, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz D, Nishikawa S-I (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiktor-Jedrzejczak, W., Nowicki, A. (1996). Spontaneous Knockout of CSF-1 Gene in the Mouse as a Model to Study the Organization of the Macrophage System. In: Zander, A.R., Ostertag, W., Afanasiev, B.V., Grosveld, F. (eds) Gene Technology. NATO ASI Series, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61122-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61122-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64704-8

  • Online ISBN: 978-3-642-61122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics