Skip to main content

Tropical stratospheric Ozone ChangesFollowing the Eruption of Mount Pinatubo

  • Conference paper
The Mount Pinatubo Eruption

Part of the book series: NATO ASI Series ((ASII,volume 42))

Abstract

The eruption of Mount Pinatubo in June 1991 placed a large amount of SO2 in the stratosphere which was converted to sulfuric acid aerosols in 2-3 months after the eruption. These aerosols remained primarily in the tropical stratospheric reservoir (TSR) for the first 6 months or so after the eruption before being largely dispersed to midlatitudes. The large amount of SO2 and aerosols in the TSR was sufficient to cause easily observable changes in stratospheric ozone. There was an initial 2% column increase caused by photooxidation of SO2, followed by a 5% column decrease in the region from the Equator to 10 deg. S in the August-November 1991 period based on total ozone mapping spectrometer (TOMS) data. A comparison of electrochemical concentration cell (ECC) sonde data at Brazzaville (4°s) and Ascension Island (8°s) with the historical pre-Pinatubo stratospheric aerosol and gas experiment II (SAGE II) ozone data showed indicated a 8% column decrease between 16 and 28 km along with a 2% column increase between 28 and 32 km. The decrease from 16 to 28 km is likely due primarily to a combination of aerosol heating and lofting of the associated air mass and aerosol effects on photolysis, with small contributions from heterogeneous chemistry involving the aerosols. The increase above 28 km is primarily due to the removal of NO2 by the aerosols, permitting the photochemical production of ozone to be more efficient. The phase change of the QBO from easterly to westerly was delayed by the rising motion of the aerosols by about 10 months, resulting in about a 10-D.U. decrease of ozone for that period compared to what would have been the case without the delay. In addition, in the middle of 1992, there was another minimum in stratospheric ozone in the Equator-to-10°S region, beyond that expected from QBO effects, which is not explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriani A, Fiocco G, Gobbi GP, and Congeduti F (1987) Correlated behavior of the aerosol and ozone contents of the stratosphere after the El Chichón eruption, J Geophys Res 92: 8365–8372.

    Article  Google Scholar 

  • Bekki S, Toumi R, Pyle JA (1993) Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo, Nature 362: 331–333.

    Article  Google Scholar 

  • Bluth GJS, Doiron SK, Schnetzler CC, Krueger AJ, Walter LS (1992) Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions, Geophys Res Lett 19: 151–154.

    Article  Google Scholar 

  • Brasseur GP, Granier C (1992) Pinatubo aerosols, chlorofluorocarbons, and ozone depletion, Science 257: 1239–1242.

    Article  Google Scholar 

  • Browell EV (1989) Differential absorption lidar sensing of ozone, Proc IEEE 77: 419–432.

    Article  Google Scholar 

  • Chandra S (1993) Changes in stratospheric ozone and temperature due to the eruptions of Mt. Pinatubo, Geophys Res Lett 20: 33–36.

    Article  Google Scholar 

  • Chipperfield MP, Gray LJ, Kinnersley JS, Zawodny J (1994) A two-dimensional model study of the QBO signal in SAGE II NO2 and O3, Geophys Res Lett 21: 589–592.

    Article  Google Scholar 

  • Cros B, Nganga D, Minga A, Fishman J, Brackett V (1992) Distribution of tropospheric ozone at Brazzaville, Congo, determined from ozonesonde measurements, J Geophys Res 97: 12,869–12,875.

    Google Scholar 

  • Crutzen PJ, Schmaitzl U (1983) Chemical budgets of the stratosphere, Planet Space Sci 31: 1009–1032.

    Article  Google Scholar 

  • Dutton EG, Reddy P, Ryan S, DeLuisi JJ (1994) Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992, J Geophys Res 99: 8295–8306.

    Article  Google Scholar 

  • Fiocco G, Mugnai A, Forlizzi W (1978) Effects of radiation scattered by aerosols on the photodissociation of ozone, J Atmos Terr Phys 40: 949–961.

    Article  Google Scholar 

  • Fishman J (1991) Probing planetary pollution from space, Environ Sci Technol 25: 613–620.

    Article  Google Scholar 

  • Fishman J, Brackett VG, Fakhruzzaman K (1992) Distribution of tropospheric ozone in the tropics from satellite and ozonesonde measurements, J Atmos Terr Phys 54: 589–597.

    Article  Google Scholar 

  • Froidevaux L, Waters JW, Read WG, Elson LS, Flower DA, Jarnot RF (1994) Global ozone observations from UARS MLS: An overview of zonal mean results, J Atmos Sci 51: 2846–2866.

    Article  Google Scholar 

  • Grant WB (1992) Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo, Geophys Res Lett 19: 1109–1112.

    Article  Google Scholar 

  • Grant WB, et al. (1994a) Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo, J Geophys Res 99: 8197–8211.

    Article  Google Scholar 

  • Grant WB, et al. (1994b) Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mt. Pinatubo, Proc. Quadrennial Ozone Symposium, IOC, Charlottesville, Va., June 4–13, 1992, NASA Conf Pub 3266, 631–634.

    Google Scholar 

  • Herman JR, McPeters R, Larko D (1993) Ozone depletion at northern and southern latitudes derived from January 1979 to December 1991, Total Ozone Mapping Spectrometer data, J Geophys Res 98: 12,783–12,793.

    Article  Google Scholar 

  • Herman JR, Larko D (1994) Low ozone amounts during 1992–1993 from Nimbus 7 and Meteor 3 total ozone mapping spectrometers, J Geophys Res 99: 3483–3496.

    Article  Google Scholar 

  • Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichón, J Geophys Res 94: 5029–5041.

    Article  Google Scholar 

  • Hofmann DJ, Oltmans SJ, Harris JM, Solomon S, Deshler T, Johnson BJ (1992) Observation and possible causes of new ozone depletion in Antarctica in 1991, Nature 359: 283–287.

    Article  Google Scholar 

  • Hofmann DJ, Oltmans SJ, Harris JM, Komhyr WD, Lathrop JA, DeFoor T (1993) Ozonesonde measurements at Hilo, Hawaii following the eruption of Pinatubo, Geophys Res Lett 20: 1555–1558.

    Article  Google Scholar 

  • Hofmann DJ, Oltmans SJ, Komhyr WD, Harris JM, Lathrop JA, Langford AO, Deshler T, Johnson BJ, Torres A, Matthews WA(1994) Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol, Geophys Res Lett 21: 65–68.

    Article  Google Scholar 

  • Kinne S, Toon OB, Prather MJ (1992) Buffering of stratospheric circulation by changing amounts of tropical ozone: A Pinatubo case study, Geophys Res Lett 19: 1927–1930.

    Article  Google Scholar 

  • Kinnison DE, Grant KE, Connell PS, Wuebbles DJ, Rotman DA (1994) The chemical and radiative effects on the Mt. Pinatubo eruption, J Geophys Res 99: 25,705–25,731.

    Google Scholar 

  • Koike M, Kondo Y, Matthews WA, Johnston PV, Yamazaki K (1993) Decrease of stratospheric NO2 at 44°N caused by Pinatubo volcanic aerosols, Geophys Res Lett 20: 1975–1978.

    Article  Google Scholar 

  • Koike M, Jones NB, McKenzie RL, Kinnison D, Rodriguez J (1994) Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3, Geophys Res Lett 21: 597–600.

    Article  Google Scholar 

  • Komhyr WD (1969) Electrochemical concentration cells for gas analysis, Ann Geophys 25: 203–210.

    Google Scholar 

  • McCormick MP, Veiga RE (1992) SAGE II measurements of early Pinatubo aerosols, Geophys Res Lett 19: 155–158.

    Article  Google Scholar 

  • McCormick MP, Hamill P, Pepin TJ, Chu WP, Swissler TJ, McMaster LR (1979) Satellite studies of the stratospheric aerosol, Bull Am Meteorol Soc 60: 1038–1046.

    Article  Google Scholar 

  • Michelangeli DV, Allen M, Yung YL (1989) El Chichón volcanic aerosols: Impact of radiative, thermal, and chemical perturbations, J Geophys Res 94: 18,429–18,443.

    Article  Google Scholar 

  • Pitari G, Rizi V (1993) An estimate of the chemical and radiative perturbation of stratospheric ozone following the eruption of Mt. Pinatubo, J Atmos Sci 50: 3260–3276.

    Article  Google Scholar 

  • Rinsland CP, Gunson MR, Abrams MC, Lowes LL, Zander R, Mahieu E, Goldman A, Ko MKW, Rodriguez JM, Sze ND (1994) Heterogeneous conversion of N2O5 to HNO3 in the post-Mt. Pinatubo eruption stratosphere, J Geophys Res 99: 8213–8219.

    Article  Google Scholar 

  • Rodriguez JM, Ko MKW, Sze ND (1991) Role of heterogeneous conversion of N2O5 on sulfate aerosols in global ozone losses, Nature 352: 134–137.

    Article  Google Scholar 

  • Rodriguez JM, Ko MKW, Sze ND, Heisey CW, Yue GK, McCormick MP (1994) Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo, Geophys Res Lett 21: 209–212.

    Article  Google Scholar 

  • Russell PB, et al. (1993a) Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data, J Geophys Res 98: 22,969–22,985.

    Google Scholar 

  • Russell PB, et al. (1993b) Post-Pinatubo optical depth spectra vs. latitude and vortex structure: Airborne tracking sunphotometer measurements in AASE II, Geophys Res Lett 20: 2571–2574.

    Article  Google Scholar 

  • Schoeberl MR, Bhartia PK, Hilsenrath E, Torres O (1993) Tropical ozone loss following the eruption of Mt. Pinatubo, Geophys Res Lett 20: 29–32.

    Article  Google Scholar 

  • Tie, X, Brasseur GP, Briegleb B, Granier C (1994) Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone, J Geophys Res 99: 20,545–20,562.

    Google Scholar 

  • Trepte CR, Hitchman MH (1992) Tropical stratospheric circulation deduced from satellite aerosol data, Nature 355, 626–628.

    Article  Google Scholar 

  • Valero FPJ, Pilewskie P (1992) Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud-derived particle sizes, columnar mass loadings, and effects on planetary albedo, Geophys Res Lett 19: 163–166.

    Article  Google Scholar 

  • Verdecchia M, Visconti G, Pitari G (1992) Radiative perturbation due to the eruption of El Chichón: Effects on ozone, J Atmos Terrest Phys 54: 1081–1084.

    Article  Google Scholar 

  • Waters JW, et al. (1992) The UARS Microwave Limb Sounder experiment, paper presented at the Eighth Conference on the Middle Atmosphere, Am Meteorol Soc, Atlanta, Ga., January 5–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grant, W.B. (1996). Tropical stratospheric Ozone ChangesFollowing the Eruption of Mount Pinatubo. In: Fiocco, G., Fuà, D., Visconti, G. (eds) The Mount Pinatubo Eruption. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61173-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61173-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64731-4

  • Online ISBN: 978-3-642-61173-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics