Skip to main content

A Pinatubo Climate Modeling Investigation

  • Conference paper
The Mount Pinatubo Eruption

Abstract

Global cooling of the Earth’s surface has been observed following the largest volcanic eruptions of the past century, although the average cooling is perhaps less than expected from simple energy balance considerations. The Mount Pinatubo eruption, with both the climate forcing and response observed better than previous volcanoes, allows a more quantitative analysis of the sensitivity of climate to a transient forcing. We describe the strategy and preliminary results of a comprehensive investigation of the Pinatubo case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramopoulos F (1991) A new fourth-order enstrophy and energy conserving scheme, Mon Wea Rev 119: 128–133

    Article  Google Scholar 

  • AGU (1992) Volcanism and Climate Change, American Geophysical Union Special Report ISBN 87590-818–7, Washington, 27 pp

    Google Scholar 

  • Barkstrom B, Harrison E, Smith G, Green, R Kibler J, Cess R (1989) Earth Radiation Budget Experiment (ERBE) Archival and April 1985 Results, Bull Amer Meteorol Soc 70: 1254–1262

    Article  Google Scholar 

  • Del Genio AD, Yao MS (1993) Efficient cumulus parameterization for long-term climate studies: the GISS scheme, Amer Meteorol Soc Mono 46: 181–184

    Google Scholar 

  • Del Genio AD, Yao MS, Kovari W, Lo KKW (1995) A prognostic cloud water parameterization for global climate models, J Climate (submitted)

    Google Scholar 

  • Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichon and Pinatubo, Geophys Res Lett 19: 2313–2316

    Article  Google Scholar 

  • Forsyth PY (1988) In the wake of Etna, 44 BC, Classical Antiquity 7: 49–57

    Google Scholar 

  • Franklin B (1784) Meteorological imaginations and conjectures Paper read December 22, 1784 to Literary and Philosphical Society of Manchester, reprinted by Sigurdsson (1982)

    Google Scholar 

  • Gates WL (1992) AMIP: the atmospheric model intercomparison project, Bull Amer Meteorol Soc 73: 1962–1970

    Article  Google Scholar 

  • Gelman ME (1991) Stratospheric monitoring with TOVS data, Palaeogeo Palaeoclim Palaeoecol 90: 75–78

    Google Scholar 

  • Gilliland RL, Schneider SH (1984) Volcanic, CO2 and solar forcing of Northern and Southern Hemisphere surface air temperatures, Nature 310: 38–41

    Article  Google Scholar 

  • Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ (1992) Arctic and Antarctic Sea Ice, 1978–1987, NASA SP-511, Washington DC, 290 pp

    Google Scholar 

  • Graf HF, Kirchner I, Robock A, Schult I (1993) Pinatubo eruption winter climate effects: model versus observations, Clim Dyn 9: 81–93

    Google Scholar 

  • Graf HF, Perlwitz J, Kirchner I (1994) Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions, Beitr Phys Atmosph 67: 3–13

    Google Scholar 

  • Handler P (1986) Possible association between the climatic effects of stratospheric ae 0 ‘37nd sea surface temperatures in the eastern tropical Pacific Ocean, J Climatology 6: 31–41

    Article  Google Scholar 

  • Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J Geophys Res 93: 9341–9364

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms, Geophys Mono 29: 130–163

    Article  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption, Geophys Res Lett 19: 215–218

    Article  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M, Wilson H (1993) How sensitive is the world’s climate? Res Explor 9: 142–158

    Google Scholar 

  • Hansen JE, Lebedeff S (1987) Global trends of measured surface air temperature, J Geophys Res 92: 13345–13372

    Article  Google Scholar 

  • Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: models I and II, Mon Wea Rev 111: 609–662

    Article  Google Scholar 

  • Hansen JE, Travis LD (1974) Light scattering in planetary atmospheres, Space Sci Rev 16: 527–610

    Article  Google Scholar 

  • Hansen JE, Wang WC, Lacis AA (1978) Mount Agung eruption provides test of a global climatic perturbation, Science 199: 1065–1068

    Article  Google Scholar 

  • Hansen J, Wilson H, Sato M, Ruedy R, Shah K, Hansen E (1995) Satellite and surface temperature data at odds? Climatic Change (in press)

    Google Scholar 

  • Harrington CR (1992) The Year Without a Summer Canadian Museum of Nature, Ottawa, 576 PP

    Google Scholar 

  • Hartke GJ, Rind D (1995) An improved boundary layer model for the GISS GCM (in preparation)

    Google Scholar 

  • Hofmann DF, Rosen JM (1983) Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon, Science 222: 325–327

    Article  Google Scholar 

  • Hunt BG (1977) A simulation of the possible consequences of a volcanic eruption on the general circulation of the atmosphere, Mon Wea Rev 105: 247–260

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (1992) Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment Houghton JT, Callander BA, Varney SK (eds), Cambridge Univ Press, 200 pp

    Google Scholar 

  • Jensen EG, Toon OB (1992) The potential effects of volcanic aerosols on cirrus cloud microphysics, Geophys Res Lett 19: 1759–1762

    Article  Google Scholar 

  • Jiang X, Fung I (1994) Ocean response to surface heat anomalies, J Climate, 7: 783–791

    Article  Google Scholar 

  • Kodera K (1993) Influence of the stratospheric circulation change on the troposphere in the Northern Hemisphere winter, in The Role of the Stratosphere in Global Change, ML Chanin ed, Springer-Verlag, Berlin, pp 227–243

    Google Scholar 

  • Kodera K, Yamazaki K (1994) A possible influence of recent polar stratospheric coolings on the troposphere in the northern hemisphere winter, Geophys Res Lett 21: 809–812

    Article  Google Scholar 

  • Lambert A, Grainger RG, Remedios JJ, Rodgers CD, Corney M, Taylor FW (1993) Measurements of the evolution of the Mt Pinatubo aerosol cloud by ISAMS, Geophys Res Lett 20: 1287–1290

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990a) Mean seasonal and spatial variability in global surface air temperature, Theor Appl Climatol 41: 11–21

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990b) Mean seasonal and spatial variability in gauge-corrected, global precipitation, Inter J Climatol 10: 111–127

    Article  Google Scholar 

  • MacCracken MC, Luther FM (1984) Preliminary estimate of the radiative and climatic effects of the El Chichon eruption, Geofisica Internacional 23: 385–401

    Google Scholar 

  • Marengo J, Druyan L (1994) Validation of model improvements for the GISS GCM, Clim Dyn 10: 163–179

    Article  Google Scholar 

  • Mass C, Schneider SH (1978) Statistical evidence on the influence of sunspots and volcanic dust on long-term temperature trends, J Atmos Sci 34, 1995–2004

    Article  Google Scholar 

  • Matthews E (1983) Global vegetation and land-use: new high-resolution data bases for climate studies, J Clim Appl Meteorol 22: 474–487

    Article  Google Scholar 

  • Matthews E, (1984) Prescription of land-surface boundary conditions in GISS GCM II: a simple method based on fine-resolution data bases, NASA Technical Memorandum 86096

    Google Scholar 

  • McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt Pinatubo eruption, Nature 373: 399–404

    Article  Google Scholar 

  • Miller RL, Jiang X (1995) Surface heat fluxes and coupled variability in the tropics of a coupled general circulation model, J Climate (in press)

    Google Scholar 

  • Minnis P, Harrison EF Stowe LL, Gibson GG, Denn FM, Doelling DR, Smith WL (1993) Radiative climate forcing by the Mount Pinatubo eruption, Science 259: 1411–1415

    Article  Google Scholar 

  • Mitchell JM (1961) Recent secular changes of global temperature, Ann N Y Acad Sci 95, 235–250

    Article  Google Scholar 

  • NOAA (1995) Sixth Annual Climate Assessment 1994 NOAA Climate Analysis Center, Camp Springs Md (in press)

    Google Scholar 

  • Oort AH (1983) Global Atmospheric Circulation Statistics, 1958–1973, NOAA Prof Paper 14, Rockville Md, 180 pp

    Google Scholar 

  • Prather MJ (1986) Numerical advection by conservation of second order moments, J Geophys Res 91: 6671–6680

    Article  Google Scholar 

  • Reynolds RW (1988) A real-time global sea-surface temperature analysis, J Climate 1: 75–86

    Article  Google Scholar 

  • Reynolds RW, Marsico DC (1993) An improved real-time global sea surface temperature analysis, J Climate 6: 114–119

    Article  Google Scholar 

  • Rind D, Balachandran NK, Suozzo R (1992) Climate change and the middle atmosphere part II: the impact of volcanic aerosols, J Climate 5: 189–208

    Article  Google Scholar 

  • Rind D, Suozzo R, Balachandran NK, Lacis A, Russell G (1988) The GISS global climate/middle atmosphere model Part I: model structure and climatology, J Atmos Sci 45: 371–386

    Article  Google Scholar 

  • Robock A (1983) The dust cloud of the century, Nature 301: 373–374

    Article  Google Scholar 

  • Robock A (1984) Climate model simulations of the effects of the El Chichon eruption, Geof Int 23: 403–414

    Google Scholar 

  • Robock A (1991) The volcanic contribution to climate change of the past 100 years, in Greenhouse-Gas-Induced Climatic Change: A Critical Evaluation of Simulations and Observations, ed ME Schlesinger, Elsevier, Amsterdam, pp 429–443

    Google Scholar 

  • Robock A, Mao J (1992) Winter warming from large volcanic eruptions, Geophys Res Lett 12: 2405–2408

    Article  Google Scholar 

  • Rosenzweig C, Abramopoulos F (1995) Land surface model development for the GISS GCM, J Climate (submitted)

    Google Scholar 

  • Rossow WB, Zhang YC (1995) Calculation of the top-of-the-atmosphere radiative fluxes from physical quantities derived from ISCCP data sets Part II: validation and results, J Geophys Res 100: 1167–1197

    Article  Google Scholar 

  • Russell GL, Miller JR, Rind D (1995) A coupled atmosphere-ocean model for transient climate change studies, Atmos Ocean (submitted)

    Google Scholar 

  • Russell PB, Livingston JM, Dutton EG, Pueschel RF, Reagan JA, DeFoor TE, Box MA, Allen D, Pilewskie P, Herman BM, Kinne SA, Hofmann DJ (1993) Pinatubo and pre-Pinatubo optical depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data, J Geophys Res 98: 22,969–22,985

    Google Scholar 

  • Russell PB, Livingston JM, Pueschel RF, Pollack JB, Brooks SL, Hamill PJ, Hughes JJ, Thomason LW, Stowe LL, Deshler T, Dutton EG, Bergstrom RW (1995) Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses, J Geophys Res (submitted)

    Google Scholar 

  • Sassen K, Starr DO, Mace GG, Poellot MR, Melfi SH, Eberhard WL, Spinhirne JD, Elorante EW, Hagen DE, Hallett J (1995) The 5–6 December 1991 FIRE II jet stream cirrus case study: possible influences of volcanic aerosols, J Atmos Sci 52: 97–132

    Article  Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990, J Geophys Res 98: 22,987–22,994

    Article  Google Scholar 

  • Schneider SH, Mass C (1975) Volcanic dust, sunspots, and temperature trends, Science 190: 741–746

    Google Scholar 

  • Self S, Rampino MR (1988) The relationship between volcanic eruptions and climate change: still a conundrum? Eos 69: 74–86

    Article  Google Scholar 

  • Shah KP, Rind D (1995) Use of microwave brightness temperatures with a general circulation model, J Geophys Res (in press)

    Google Scholar 

  • Sigurdsson H (1982) Volcanic pollution and climate: the 1783 Laki eruption, EOS Trans Amer Geophys Union 63: 601–603

    Google Scholar 

  • Spencer RW, Christy JR (1993) Precision lower stratospheric temperature monitoring with the MSU: technique, validation, and results 1979–1991, J Clim 6: 1194–1204

    Article  Google Scholar 

  • Spencer RW, Christy JR, Grody NC (1991) Precision tropospheric temperature monitoring 1979–90, Palaeogeog Palaeoclim Palaeoecol 90: 113–120

    Google Scholar 

  • Stommel H, Stommel E (1979) The year without a summer, Sci Amer 240 176–186

    Article  Google Scholar 

  • Stommel H, Stommel E (1983) Volcano Weather, the Story of 1816, The Year Without a Summer, Seven Seas Press, Newport, RI, 177 pp

    Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath, Science 224: 1191–1198

    Article  Google Scholar 

  • Stothers RB, Rampino MR (1983) Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, Geophy Res 88 6357–6371

    Article  Google Scholar 

  • Wang PH, Minnis P, Yue GK (1995) Extinction coefficient (1 um) properties of high-altitude clouds from solar occultation measurements (1985–1990): evidence of volcanic aerosol effect, J Geophys Res 100: 3181–3199

    Article  Google Scholar 

  • Wilson C (1992) Workshop on World Climate in 1816: a summary and discussion of results in The Year Without a Summer? World Climate in 1816, ed CR Harrington, Canadian Museum of Nature, Ottawa, pp 523–555

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, J. et al. (1996). A Pinatubo Climate Modeling Investigation. In: Fiocco, G., Fuà, D., Visconti, G. (eds) The Mount Pinatubo Eruption. NATO ASI Series, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61173-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61173-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64731-4

  • Online ISBN: 978-3-642-61173-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics