Skip to main content

Effects of Acid Rain on Soil Chemistry and Nutrient Availability in the Soil

  • Conference paper
Forest Decline and Air Pollution

Abstract

Nutrient availability in soils is strongly related to soil pH. Plant uptake of Ca and Mg increases with pH while the availability of most trace nutrients increases with decreasing soil pH (Finck 1976). On the one hand, pH determines the solubility of many nutrients, on the other hand pH of the soil solution indicates the concentration of alkali and earth alkali ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altemüller HJ, Haag T (1983) Mikroskopische Untersuchungen an Maiswurzeln im ungestörten Bodenverband. Kalibriefe 16:349–363

    Google Scholar 

  • April R, Newton R (1985) Influence of geology on lake acidification in the ILWAS watersheds. Water Air Soil Pollut 26:373–386

    CAS  Google Scholar 

  • Aringhieri R, Pardini G (1983) Interactions between OH- ions and soil surfaces: a cinetic study. Can J Soil Sci 63:741–748

    Article  CAS  Google Scholar 

  • Bache BW (1984) The role of calcium in buffering soils. Plant Cell Environ 7:391–396

    Article  CAS  Google Scholar 

  • Barber M (1962) A diffusion and mass flow concept of soil nutrient availability. Soil Sci 93:39–49

    Article  CAS  Google Scholar 

  • Bardslay CE, Lancaster JD(1965) Chemical and microbiological properties. In: Black CA, Evans DD, White JL, Emsinger LE, Clark FE (eds) Methods of soil analysis. ASA. Madison, USA, part 2:1102–1116

    Google Scholar 

  • Becher HH (1985) Mögliche Auswirkungen einer schnellen Wasserbewegung in Böden mit Makroporen auf den Stofftransport. Z Dtsch Geol Ges 136:303–309

    Google Scholar 

  • Beese F (1982) Gesetzmäßigkeiten beim Transport gelöster Stoffe im Boden. Beitr Hydrol Sonderheft 4:267–300

    Google Scholar 

  • Beese F, Wierenga PJ (1983) The variability of the apparent diffusion coefficient in unsaturated soils. Z Pflanzenernähr Bodenkd 146:760–771

    Article  CAS  Google Scholar 

  • Berden M, Nilsson SJ, Rosen K, Tyler G (1987) Soil acidification extent, causes and consequences. Nat Swed Environ Prot Board, Rep 3292:1–164

    Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Res 18:1311–1325

    Article  Google Scholar 

  • Blümel WD (1986) Waldbodenversauerung, Gefährdung eines ökologischen Puffers und Reglers. Geogr Rundschau 38:312–320

    Google Scholar 

  • Bredemeier M (1987) Quantification of ecosystem-internal proton production from the ion balance of the soil. Plant Soil 101:273–280

    Article  CAS  Google Scholar 

  • Brown KA (1987) Chemical effects of pH 3 sulphuric acid on a soil profile. Water Air Soil Pollut 32:201–218

    Article  CAS  Google Scholar 

  • Childs, CW (1981) Field tests for ferrous iron and ferric organic complexes (on exchange sites or in water-soluble forms) in soils. Aust J Soil Res 19:175–180

    Article  CAS  Google Scholar 

  • Cronan CS (1985) Chemical weathering and solution chemistry in acid forest soils: Differential influence of soil type, biotic processes and H+ deposition. In: Drever JI (ed) The Chemistry of Weathering. Reidel Publ Co Dordrecht, pp 175–195

    Google Scholar 

  • Cronan CS, Alken GR (1985) Chemistry and transport of soluble humic substances in forest watersheds of the Adirondack Park, New York. Geochim Cosmochim Acta 49:1697–1705

    Article  CAS  Google Scholar 

  • Dexter AR, Horn R, Kemper W (1988) Two mechanisms of agehardening of aggregates. J Soil Sci 39:163–175

    Article  Google Scholar 

  • De Vries W, Breeuwsma A (1985) Acidification of Dutch forest soils as influenced by natural soil processes, extraction of biomass and acid rain. Ned Barbouwijdschr 57:1111–1117

    Google Scholar 

  • Driscol CT, Van Breemen N, Mulder J (1985) Aluminum chemistry in a forested spodosol. Soil Sci Soc Am J 49:437–444

    Article  Google Scholar 

  • Evans A Jr, Zelazny IW (1987) Effects of sulfate additions on the status of exchangeable aluminum in a Cecil soil. Soil Sci 143:410–417

    Article  CAS  Google Scholar 

  • Federer CA, Hornbeck JW (1985) The buffer capacity of forest soils in New England. Water Air Soil Pollut 26:163–173

    Article  CAS  Google Scholar 

  • Finck A (1976) Pflanzenernährung in Stich Worten. Hirt, Kiel, 1–200

    Google Scholar 

  • Fölster H (1985) Proton consumption rates in holocene and present day weathering of acid forest soils. In: Brever JJ (ed) The chemistry of weathering. Reidel Publ Co, Dordrecht, pp 197–209

    Google Scholar 

  • Gunzelmann M, Horn R (1987) Wasserhaushaltsuntersuchungen an natürlich gelagerten Bodenaggregaten. Mitt Dtsch Bodenkd Ges 53:395–401

    Google Scholar 

  • Hantschel R (1987) Wasser-und Elementbilanz von geschädigten, gedüngten Fichtenökosystemen unter Berücksichtigung von physikalischer und chemischer Bodenheterogenität. Bayreuther Bodenkd Ber 3:1–219

    Google Scholar 

  • Hantschel R, Kaupenjohann M, Horn R, Zech W (1986) Kationenkonzentration in der Gleichgewichts-und Perkolationsbodenlösung (GBL und PBL)-ein Methoden vergleich. Z Pflanzenernähr Bodenkd 149:136–139

    Article  CAS  Google Scholar 

  • Hantschel R, Durner W, Horn R (1987) Die Bedeutung von Porenheterogenitäten für die Erstellung von pF/WG — und K/O Kurven. Mitt Dtsch Bodenkd Ges 53:403–409

    Google Scholar 

  • Hargrove WL, Thomas GW (1982) Titration properties of Al-organic matter. Soil Sci 134:216–225

    Article  CAS  Google Scholar 

  • Hartge KH, Horn R (1977) Spannungen und Spannungsverteilungen als Entstehungsbedingungen von Aggregaten. Mitt Dtsch Bodenkd Ges 25:25–33

    Google Scholar 

  • Hillel D (1980) Fundamentals of Soil Physics. Academic Press, Lond NY

    Google Scholar 

  • Horn R (1976) Festigkeitsänderungen infolge von Aggregierungsprozessen eines mesozoischen Tones. Diss TU Hannover

    Google Scholar 

  • Horn R (1987) The role of structure for nutrient sorptivity of soils. Z Pflanzenernähr Bodenkd 150:13–16

    Article  CAS  Google Scholar 

  • Horn R, Stock J, Dexter AR (1987) The influence of soil structure on penetration resistance. Z Pflanzenernähr Bodenkd 150:342–347

    Article  Google Scholar 

  • Hüttl RF (1985) “Neuartige” Waldschden und Nährelemantversorgung von Fichtenbeständen (Picea abies Karst.) in Südwestdeutschland. Freiburger Bodenkundliche Abhandlungen, Freiburg, 16:1–195

    Google Scholar 

  • Hüttl RF, Zöttl HW (1985) Ernährungszustand von Tannenbeständen in Süddeutschland-Ein historischer Vergleich. Allg Forstz 40:1011–1013

    Google Scholar 

  • James BR, Riha SR (1986) pH buffering in forest soil organic horizons: Relevance to acid precipitation. J Environ Qual 15:229–234

    Article  CAS  Google Scholar 

  • Johansson G (1962) The crystal structures of (Al2(OH)2(H2O)8)(SO4) 2H2O and (Al2(OH)2 (H2O)8)(SeO4)2 2H2O. Acta Chim Scand 16:403–420

    Article  CAS  Google Scholar 

  • Jungk A, Ciaassen M (1986) Availability of phosphate and potassium as the results of interactions between root and soil in the rhizosphere. Z Pflanzenernähr Bodenkd 149:411–427

    Article  CAS  Google Scholar 

  • Khanna PK, Prenzel J, Meiwes KJ, Ulrich B, Matzner E (1987) Dynamics of sulfate retention by acid forest soils in an acidic deposition environment. Soil Sci Soc Am J 51:446–452

    Article  CAS  Google Scholar 

  • Kaupenjohann M (1989) Chemischer Bodenzustand und Nährelementversorgung immissions-belasteter Fichtenstandorte in NO-Bayern. Bayreuther Bodenkundl Ber 11:1–202

    Google Scholar 

  • Kaupenjohann M, Hantschel R (1987) Short-timed pH-buffering of disturbed and undisturbed forest soil samples. Z Pflanzenernähr Bodenkd 150:156–160

    Article  CAS  Google Scholar 

  • Kaupenjohann M, Hantschel R, Zech W, Horn R (1987a) Mögliche Auswirkungen “Sauren Regens” auf die Nährstoffversorgung von Wäldern. Kalibriefe, Büntehof 18:631–638

    Google Scholar 

  • Kaupenjohann M, Hantschel R, Zech W, Horn R (1987b) Bodenextrakte zur chemischen Kennzeichnung der Nährstoffversorgung säurebelasteter Fichtenstandorte. Mitt Dtsch Bodenkd Ges 55/II:607–612

    Google Scholar 

  • Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Reviews in mineralogy, Vol 8: Mineralogical Society of America. Washington DC, Book Crafters Inc. Chelsea, Michigan, 1–68

    Google Scholar 

  • Lee YH (1985) Aluminium speciation in different water types. In: Andersson F, Olsson B (eds) Lake Gardsjön — an acid forest lake and its catchment. Ecol Bull 37:109–119

    Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (1986) Root induced changes in the rhizosphere: importance of the mineral nutrition of plants. Z Pflanzenernähr Bodenkd 149:441–456

    Article  CAS  Google Scholar 

  • Martin AE, Reeve R (1958) Chemical studies of podzolic illuvial horizons. III. Titration curves of organic-matter suspensions. J Soil Sci 9:89–100

    Article  CAS  Google Scholar 

  • Matzner E, Ulrich B (1984) Rates of deposition, of soil internal production and of turnover of protons in two forest ecosystems. Z Pflanzenernähr Bodenkd 147:290–308

    Article  CAS  Google Scholar 

  • Mulder J, Van Dobben HF, De Visser PHB, Booltink HWG, Van Breemen N (1987a) Effect of vegetation cover on atmospheric deposition and soil acidification. Proc Int Symp “Acidification and water pathways”. Bolkesjo I:79–90

    Google Scholar 

  • Mulder J, Van Grinsven JJM, Van Breemen N (1987b) Impacts of acid atmospheric deposition on woodland soils in the Nederlands. III: Aluminum chemistry. Soil Sci Soc Am J 51:1640–1646

    Article  CAS  Google Scholar 

  • Murach D (1984) Die Reaktion von Feinwurzeln aufzunehmende Bodenversauerung. Gött Bodenkd Ber 72:1–126

    Google Scholar 

  • Nätscher L (1987) Art, Menge und Wirkungsweise von Puffersubstanzen in Auflagehorizonten forstlich genutzter Böden des Fichtelgebirges. PhD Diss, TU München, 132 pp

    Google Scholar 

  • Nätscher L, Schhwertmann U (1989) Mechanism and kinetics of proton buffering in acid soils. I. Organic horizons. Soil Sci Soc Am J (submitted)

    Google Scholar 

  • Nilson SI, Bergkvist B (1983) Aluminum chemistry and acidification processes in a shallow podzol on the Swedish west coast. Water Air Soil Pollut 20:311–329

    Google Scholar 

  • Nilsson J, Grennfelt P (1988) Reprint of the workshop report on critical loads for sulfur and nitrogen. Miljorapport, Stockholm 16:1–31

    Google Scholar 

  • Nordstrom DK (1982) The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system Al2O3-SO3-H2O at 298 K Geochim Cosmochim Acta 46:681–692

    CAS  Google Scholar 

  • Nye PH, Ameloko A (1986) A comparison of measured and theoretical soil acidity diffusion coefficients over a wide range of pH. J Soil Sci 37:191–196

    Article  CAS  Google Scholar 

  • Palma RM, Arrigo NN, Conti ME (1984) Chemical characteristics of soil aggregates. Sci del Suelo II:93–97

    Google Scholar 

  • Prenzel J (1982) Ein bodenchemisches Gleichgewichtsmodell mit Kationenaustausch und Alu-miniumhydroxosulfat. Gött Bodenkd Ber 72:1–113

    Google Scholar 

  • Prenzel J (1983) A mechanism for storage and retrieval of acid in acid soils. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel Pub Co, Dordrecht, 157–170

    Google Scholar 

  • Reuss O (1980) Simulation of soil nutrient losses resulting from rainfall acidity. Ecol Model 11:15–38

    Article  CAS  Google Scholar 

  • Schaller G, Fischer WR (1985) Short-time pH buffering of soils. Z Pflanzenernähr Bodenkd 148:471–480

    Article  CAS  Google Scholar 

  • Schnoor JL, Stumm W (1985) Acidification of aquatic and terrestrical systems. In: Stumm W (ed) Chemical processes in lakes. Wiley, NY, 311–338

    Google Scholar 

  • Schulin R, Flühler H, Mansell RS, Selim HR (1986) Miscible displacement of ions in aggregated soils. Geoderma 38:311–322

    Article  CAS  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens mit Ammoniumoxalatlösung. Z Pflanzenernähr Düng Bodenkd 105:194–202

    Article  CAS  Google Scholar 

  • Schwertmann U, Süsser P, Nätscher C (1987) Proton buffer compounds in soils. Z Pflanzenernähr Bodenkd 150:174–178

    Article  CAS  Google Scholar 

  • Soil Taxonomy (1975) Agricultural handbook No. 436. Soil Conserv Serv, US Dep Agric, Washington DC

    Google Scholar 

  • Stahlberg S (1984) Rapid acid and base titration of soil for determination of exchangeable cations and CEC. Acta Agric Scand 34:71–83

    Article  Google Scholar 

  • Süsser P (1987) Art, Menge und Wirkungsweise von Puffersubstanzen in Mineralbodenhorizonten forstlich genutzter Böden des Fichtelgebirges. Dissertation, TU München, 1–35

    Google Scholar 

  • Trautner F (1988) Entwicklung und Anwendung von Meßsystemen zur Untersuchung der chemischen und physikalischen Eigenschaften von Nebelwasser und dessen Deposition auf Fichten. Dissertation, University of Bayreuth, 1–60

    Google Scholar 

  • Ulrich B (1981) Ökologische Gruppierungen von Böden nach ihrem chemischen Bodenzustand. Z Pflanzenernähr Bodenkd 144:289–305

    Article  CAS  Google Scholar 

  • Ulrich B (1986) Natural and anthropogenic components of soil acidification. Z Pflanzenernähr Bodenkd 149:702–717

    Article  CAS  Google Scholar 

  • Ulrich B, Mayer R, Khanna PK (1979) Deposition von Luftverunreinigung und ihre Auswirkungen in Waldökosystemen im Soiling. Schr Forstl Fak Univ Gött Niedersächs Forstl Versuchsanst 58:291 S

    Google Scholar 

  • Van Breemen N, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils. Plant Soil 75:283–308

    Article  Google Scholar 

  • Van Breemen N, De Visser PHB, Van Grinsven JJM (1986) Nutrient and proton budgets in four soil-vegetation systems underlain by Pleistocene alluvial deposits. J Geol Soc 143:659–666

    Article  Google Scholar 

  • Weast RC (1978) Handbook of chemistry and physics. 58th edn, CRC Press, West Palm Beach, Florida D-150

    Google Scholar 

  • Zech W, Popp E (1983) Magnesiummangel, einer der Gründe für das Fichten-und Tannensterben in NO-Bayern. Forstwiss Centralbl 102:50–55

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaupenjohann, M. et al. (1989). Effects of Acid Rain on Soil Chemistry and Nutrient Availability in the Soil. In: Schulze, ED., Lange, O.L., Oren, R. (eds) Forest Decline and Air Pollution. Ecological Studies, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61332-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61332-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64795-6

  • Online ISBN: 978-3-642-61332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics