Skip to main content

The Interaction of Periphery and Center in the Development of Dorsal Root Ganglia

  • Chapter
Development of Sensory Systems

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 9))

Abstract

In this chapter we shall be concerned with the interactions that occur between the dorsal root ganglia (DRGs) and their peripheral fields of innervation in the course of vertebrate development. The term “center”, as used here, refers to the neuronal cell bodies comprising the dorsal root ganglia. “Periphery” refers to the organ or field of innervation from which sensory nerve impulses originate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angevine, J. B., Jr.: Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. comp. Neurol. 139, 129–188 (1970).

    PubMed  Google Scholar 

  • Auerbach, R.: Analysis of the developmental effects of a lethal mutation in the house mouse. J. exp. Zool. 127, 305–330 (1954).

    Google Scholar 

  • Baker, R.E.: Behavioral reflexes in R. catesbeiana and R. clamitans with large skin grafts. J. exp. Zool. 173, 129–136 (1970).

    PubMed  CAS  Google Scholar 

  • Barron, D. H.: The role of the sensory fibers in the differentiation of spinal cord in sheep. J. exp. Zool. 100, 431–443 (1945).

    PubMed  CAS  Google Scholar 

  • Bellairs, R.: Cell death in chick embryos as studied by electron microscopy. J. Anat. (Lond.) 95, 54–60 (1961).

    CAS  Google Scholar 

  • Birks, R.I., Weldon, P.R.: Formation of crystalline ribosomal arrays in cultured chick embryo dorsal root ganglia. J. Anat. (Lond.) 109, 143–156 (1971).

    CAS  Google Scholar 

  • Bors, E.: Die Methodik der intrauterinen Operation im überlebenden Säugetierfoetus. Arch. Entw. Mech. Org. 105, 655–666 (1925).

    Google Scholar 

  • Bradley, R. M., Mistretta, C. M.: Fetal sensory receptors. Physiol. Rev. 55, 352–382 (1975).

    PubMed  CAS  Google Scholar 

  • Carpenter, R. L., Carpenter, E.: The effect of retarded body growth on the response of spinal ganglia subjected to excessive peripheral overloading. J. exp. Zool. 64, 187–208 (1932).

    Google Scholar 

  • Carr, V. McM., Simpson, S. B., Jr.: Peripheral effects on early development of chick spinal ganglia. Neurosci. Abs. 1, 749 (1975).

    Google Scholar 

  • Carr, V.McM.: Intrinsic and peripheral factors in the early development of chick dorsal root ganglia. Ph. D. Thesis, Northwestern University, 1976.

    Google Scholar 

  • Cauna, N., Mannan, G.: Development and postnatal changes of digital Pacinian corpuscles (corpuscula lamellosa) in the human hand. J. Anat. (Lond.) 93, 271–286 (1959).

    CAS  Google Scholar 

  • Cauna, N., Mannan, G.: Organization and development of the preterminal nerve pattern in the palmar digital tissues of man. J. comp. Neurol. 117, 309–328 (1961).

    PubMed  CAS  Google Scholar 

  • Collin, R.: Recherches cytologiques sur le développement de la cellule nerveuse. Névraxe 8, 181–308 (1906).

    Google Scholar 

  • Cowan, W. M.: Studies on the development of the avian visual system. In: Cellular Aspects of Neural Growth and Differentiation (D. C. Pease, Ed.). Los Angeles: University of California 1971, pp. 177–222.

    Google Scholar 

  • Crain, S. M., Peterson, E. R.: Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures. Science 188, 275–277 (1975).

    PubMed  CAS  Google Scholar 

  • Crain, S. M., Benitez, H., Vatter, A. E.: Some cytological effects of salivary nerve-growth factor on tissue cultures of peripheral ganglia. Ann. N Y. Acad. Sci. 118, 206–231 (1964).

    PubMed  CAS  Google Scholar 

  • Detwiler, S. R.: On the hyperplasia of nerve centers resulting from excessive peripheral loading. Proc. nat. Acad. Sci. Wash. 6, 96–101 (1920).

    CAS  Google Scholar 

  • Detwiler, S. R.: Experimental studies on morphogenesis in the nervous system. Quart. Rev. Biol. 1, 61–86 (1926a).

    Google Scholar 

  • Detwiler, S. R.: The effect of reduction of skin and muscle on the development of spinal ganglia. J. exp. Zool. 45, 399–414 (1926b).

    Google Scholar 

  • Detwiler, S. R.: The effects of extensive muscle loss upon the development of spinal ganglia in Amblystoma. J. exp. Zool. 48, 1–14 (1927).

    Google Scholar 

  • Detwiler, S. R.: Some observations upon the growth, innervation, and function of heteroplastic limbs. J. exp. Zool. 57, 183–203 (1930).

    Google Scholar 

  • Detwiler, S. R.: Experimental studies upon the development of the amphibian nervous system. Biol. Rev. 8, 269–310 (1933).

    Google Scholar 

  • Detwiler, S. R.: An experimental study of spinal nerve segmentation in Amblystoma with special reference to the plurisegmental contribution to the brachial plexus. J. exp. Zool. 67, 395–441 (1934).

    Google Scholar 

  • Detwiler, S. R.: Neuroembryology. New York: Macmillan 1936.

    Google Scholar 

  • Dürken, B.: Über frühzeitige Extirpation von Extremitätenanlagen beim Frosch. Z. Wiss. Zool. 99, 189–355 (1911).

    Google Scholar 

  • Fraisse, P.: Die Regeneration von Geweben und Organen bei Wirbeltieren, besonders Amphibien and Reptilien. Cassel: Fischer 1885.

    Google Scholar 

  • Gaze, R.M.: The Formation of Nerve Connections. New York: Academic Press 1970.

    Google Scholar 

  • Glücksmann, A.: Cell death in normal vertebrate ontogeny. Biol. Rev. 26, 59–86 (1951).

    Google Scholar 

  • Goldsmith, M., Weston, J. A., Cowell, L.: Crystalline bodies associated with morphogenetic cell death in embryonic sensory ganglia. Amer. Zool. 7, 755 (1967).

    Google Scholar 

  • Hall, E. K., Schneiderhan, M. A.: Spinal ganglion hypoplasia after limb amputation in the fetal rat. J. comp. Neurol. 82, 19–34 (1945).

    Google Scholar 

  • Hamburger, V.: The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J. exp. Zool. 68, 449––494 (1934).

    Google Scholar 

  • Hamburger, V.: Motor and sensory hyperplasia following limb-bud transplantations in chick embryos. Physiol. Zool. 13, 268–289 (1939).

    Google Scholar 

  • Hamburger, V., Levi-Montalcini, R.: Proliferation, differentiation, and degeneration of the spinal ganglia of the chick embryo under normal and experimental conditions. J. exp. Zool. 111, 457–501 (1949).

    PubMed  CAS  Google Scholar 

  • Harrison, R. G.: An experimental study of the relation of the nervous system to the developing musculature in the embryo of the frog. Amer. J. Anat. 3, 197–220 (1904).

    Google Scholar 

  • His, W.: Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. Leipzig: F. C. W. Vogel 1868.

    Google Scholar 

  • Hörstadius, S.: The Neural Crest. London: Oxford University Press 1950.

    Google Scholar 

  • Hooker, D.: Die Nerven im regenerierten Schwanz der Eidechsen. Arch. mikr. Anat. 80, 217–222 (1912).

    Google Scholar 

  • Hooker, D.: The Prenatal Origin of Behavior. Lawrence: University of Kansas Press 1952.

    Google Scholar 

  • Hughes, A. F.: The growth of embryonic neuntes. A study on cultures of chick neural tissues. J. Anat. (Lond.) 87, 150–162 (1953).

    CAS  Google Scholar 

  • Hughes, A. F.: Studies in embryonic and larval development in amphibia. I. The embryology of Eleutherodactylus recordii, with special reference to the spinal cord. J. Embryol. exp. Morph. 7, 22–38 (1959).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F.: Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin). J. Embryol. exp. Morph. 9, 269–284 (1961).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F.: Further experiments on the innervation and function of supernumerary limbs in the embryo of Eleutherodactylus martinicensis. J. Embryol. exp. Morph. 12, 229–245 (1964).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F.: Aspects of Neural Ontogeny. London: Logos 1968.

    Google Scholar 

  • Hughes, A. F.: The development of dorsal root ganglia and ventral horns in the opossum. A quantitative study. J. Embryol. exp. Morph. 30, 359–376 (1973).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F.: Endocrines, neural development and behavior. In: Studies in the Development of Behavior and the Nervous System, Vol. 2: Aspects of Neurogenesis. G. Gottlieb (Ed.). New York: Academic 1974.

    Google Scholar 

  • Hughes, A. F.: The development of the dorsal funiculus in the human spinal cord. J. Anat. (Lond.) 122, 169–175 (1976).

    CAS  Google Scholar 

  • Hughes, A.F., Egar, M.: The innervation of the hind limb of Eleutherodactylus martinicensis: further comparison of cell and fiber numbers during development. J. Embryol. exp. Morph. 27, 389–412 (1972).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F., New, D.: Tail regeneration in the geckonic lizard, Sphaerodactylus. J. Embryol. exp. Morph. 7, 281–302 (1959).

    PubMed  CAS  Google Scholar 

  • Hughes, A. F., Tschumi, P. A.: The factors controlling the development of the dorsal root ganglia and ventral horn in Xenopus laevis (Daud.). J. Anat. (Lond.) 92, 498–527 (1958).

    CAS  Google Scholar 

  • Humphrey, T.: Pattern formed at upper cervical spinal cord levels by sensory fibers of spinal and cranial nerves. Arch. Neurol. Psychiatr. 73, 36–46 (1955).

    CAS  Google Scholar 

  • Humphrey, T.: Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Prog. Brain Res. 4, 93–135 (1964).

    Google Scholar 

  • Jacobson, M.: Development of specific neuronal connections. Science 163, 543–547 (1969).

    PubMed  CAS  Google Scholar 

  • Jacobson, M.: Developmental Neurobiology. New York: Holt, Rinehart and Winston 1970.

    Google Scholar 

  • Jacobson, M.: Formation of neural connections in sensory systems. In: Handbook of Sensory Physiology, Vol. 1 (W. R. Loewenstein, Ed.). Berlin-Heidelberg-New York 1971, pp. 166–190.

    Google Scholar 

  • Jacobson, M.: Developmental Neurobiology, 2nd ed. New York: Plenum 1978.

    Google Scholar 

  • Jacobson, M., Baker, R.E.: Development of neuronal connections with skin grafts of frogs: behavioral and electrophysiological studies. J. comp. Neurol. 137, 121–142 (1969).

    PubMed  CAS  Google Scholar 

  • Jones, D.P., Singer, M.: Neurotrophic dependence of the lateral-line sensory organs of the newt, Tfiturus viridescens. J. exp. Zool. 171, 433–442 (1969).

    PubMed  CAS  Google Scholar 

  • Lamb, A. H.: The timing of the earliest motor innervation to the hind limb in the Xenopus tadpole. Brain Res. 67, 527–530 (1974).

    PubMed  CAS  Google Scholar 

  • Langworthy, O. R.: The development of progression and posture in young opossums. Amer. J. Physiol. 74, 1–13 (1925).

    Google Scholar 

  • Lawson, S. H., Caddy, K. W., Biscoe, T. J.: Development of rat dorsal root ganglion neurones. Studies of cell birthdays and changes in mean cell diameter. Cell Tiss. Res. 153, 399–413 (1974).

    CAS  Google Scholar 

  • Levi-Montalcini, R., Levi, G.: Les conséquences de la destruction d’un territoire d’innervation périphérique sur le développement des centres nerveux correspondants dans l’embryon de poulet. Arch. Biol. 53, 537–545 (1942).

    Google Scholar 

  • Levi-Montalcini, R., Levi, G.: Recherches quantitatives sur la marche du processus de differentiation des neurones dans les ganglions spinaux de l’embryon de poulet. Arch. Biol. 54, 198–206 (1943).

    Google Scholar 

  • May, R. M.: Répercussions de la greffe de moelle sur le système nerveux chez l’embryon de l’anoure, Discoglossus pictus Otth. Bull. Biol. Fr. Belg. 64, 355–387 (1930).

    Google Scholar 

  • May, R. M.: Réactions neurogéniques de la moelle à la greffe en surnombre ou à l’ablation d’une ébauche de patte postérieure chez l’embryon de l’anoure Discoglossus pictus Otth. Bull. Biol. Fr. Belg. 67, 327–349 (1933).

    Google Scholar 

  • McBride, W. G.: Fetal nerve cell degeneration produced by thalidomide in rabbits. Teratology 10, 283–292 (1974).

    PubMed  CAS  Google Scholar 

  • McCrady, E.: The Embryology of the Opossum (Amer. anat. Mem. 16). Philadelphia: Wistar Institute 1938.

    Google Scholar 

  • Miner, N.: Integumental specification of sensory fibers in the development of cutaneous local sign. J. comp. Neurol. 105, 161–170 (1956).

    PubMed  CAS  Google Scholar 

  • Müller, J.: Handbuch der Physiologie des Menschen für Vorlesungen, 2 vol. Coblenz: I. Hölscher, 1833–1840. As quoted in: Selected Readings in the History of Physiology. J. F. Fulton and L. G. Wilson (Eds.). Springfield: Charles C. Thomas 1966, pp. 289–291.

    Google Scholar 

  • Nakai, J.: Dissociated dorsal root ganglia in tissue culture. Amer. J. Anat. 99, 81–129 (1956).

    PubMed  CAS  Google Scholar 

  • Nicholas, J. S.: Notes on the application of experimental methods upon mammalian embryos. Anat. Ree. 31, 385–394 (1925).

    Google Scholar 

  • Nieuwkoop, P. D., Faber, J.: Normal Table of Xenopus laevis (Daudin). Amsterdam: North-Holland 1956.

    Google Scholar 

  • O’Connor, T. M., Wyttenbach, C. R.: Cell death in the embryonic chick spinal cord. J. Cell Biol. 60, 448–459 (1974).

    PubMed  Google Scholar 

  • Oppenheim, R. W., Heaton, M. B.: The retrograde transport of horseradish peroxidase from the developing limb of the chick embryo. Brain Res. 98, 291–302 (1975).

    PubMed  CAS  Google Scholar 

  • Pannese, E.: Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. II: Changes during cell hypertrophy and comparison between the ultrastructure of nerve cells of the same type under different functional conditions. Z. Zellforsch. 61, 561–586 (1963).

    Google Scholar 

  • Pannese, E.: Developmental changes of the endoplasmic reticulum and ribosomes in nerve cells of the spinal ganglia of the domestic fowl. J. comp. Neurol. 132, 331–364 (1968a).

    PubMed  CAS  Google Scholar 

  • Pannese, E.: Temporary junctions between neuroblasts in the developing spinal ganglia of the domestic fowl. J. ultrastruct. Res. 21, 233–250 (1968b).

    Google Scholar 

  • Pannese, E.: Electron microscopical study on the development of the satellite cell sheath in spinal ganglia. J. comp. Neurol. 135, 381–422 (1969).

    PubMed  CAS  Google Scholar 

  • Piatt, J.: Form and causality in neurogenesis. Biol. Rev. 23, 1–45 (1948).

    PubMed  CAS  Google Scholar 

  • Pilar, G., Landmesser, L.: Normal and induced neuron death in ganglia during embryogenesis. Neurosci. Abs. 1, 750 (1975).

    Google Scholar 

  • Pilar, G., Landmesser, L.: Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J. Cell Biol. 68, 339–356 (1976).

    PubMed  CAS  Google Scholar 

  • Prestige, M.C.: Cell turnover in the spinal ganglia of Xenopus laevis tadpoles. J. Embryol. exp. Morph. 13, 63–72 (1965).

    PubMed  CAS  Google Scholar 

  • Prestige, M. C.: The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles. J. Embryol. exp. Morph. 17, 453–471 (1967a).

    PubMed  CAS  Google Scholar 

  • Prestige, M. C.: The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles. J. Embryol. exp. Morph. 18, 359–381 (1967b).

    PubMed  CAS  Google Scholar 

  • Prestige, M. C., Wilson, M. A.: Loss of axons from ventral roots during development. Brain Res. 41, 467–470 (1972).

    PubMed  CAS  Google Scholar 

  • Roux, W.: Einleitung. Arch. Entw. Mech. Org. 1, 1–42 (1894).

    Google Scholar 

  • Saxod, R.: Rôle du nerf et du territoire cutané dans le développement des corpuscles de Herbst et de Grandry. J. Embryol. exp. Morph. 27, 277–300 (1972).

    PubMed  CAS  Google Scholar 

  • Schweichel, J.-U., Merker, H.-J.: The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).

    Google Scholar 

  • Schwind, J. L.: Heteroplastic experiments on the limb and shoulder girdle of Amblystoma. J. exp. Zool. 59, 265–295 (1931).

    Google Scholar 

  • Shorey, M. L.: The effect of the destruction of peripheral areas on the differentiation of the neuroblasts. J. exp. Zool. 7, 25–63 (1909).

    Google Scholar 

  • Singer, M.: A theory of the trophic nervous control of amphibian limb regeneration, including a reevaluation of quantitative nerve requirements. In: Regeneration in Animals and Related Problems (V. Kiortsis and H. A. Trampusch, Eds.). Amsterdam: North-Holland 1965.

    Google Scholar 

  • Speidel, C. C.: Correlated studies of sense organs and nerves of the lateral-line in living frog tadpoles. II: The trophic influence of specific nerve supply as revealed by prolonged observation of denervated and renervated organs. Amer. J. Anat. 82, 277–320 (1948).

    PubMed  CAS  Google Scholar 

  • Sperry, R. W.: Mechanisms of neural maturation. In: Handbook of Experimental Psychology (S. S. Stevens, Ed.). New York: Wiley 1951.

    Google Scholar 

  • Székely, G.: Problems of neuronal specificity in the development of some behavioral patterns in amphibia. In: Studies in the Development of Behavior and the Nervous System, Vol. 2: Aspects of Neurogenesis (G. Gottleib, Ed.). New York: Academic 1974.

    Google Scholar 

  • Szymonowicz, W.: Über die Entwicklung der Nervenendigungen in der Haut des Menschen. Z. Zellforsch. 19, 356–382 (1933).

    Google Scholar 

  • Tello, J. F.: Die Entstehung der motorischen und sensiblen Nervenendigungen. I: In dem lokomotorischen System der höheren Wirbeltiere. Z. Anat. Entw. 64, 348–440 (1922).

    Google Scholar 

  • Tennyson, V. M.: Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J. comp. Neurol. 124, 267–318 (1965).

    PubMed  CAS  Google Scholar 

  • Terni, T.: Sulla correlazioni fra ampiezza del territorio di innervazioni e grandezza della cellule gangliari. II: Ricerche sui gangli spinali che innervano la coda rigenerata, nei Sauri (Gangylus ocellatus). Arch. ital. Anat. Embriol. 17, 507–543 (1920).

    Google Scholar 

  • Visintini, F., Levi-Montalcini, R.: Relazione tra differenziazione structurale e funzionale dei centri e delle vie nervose nell’embrione di pollo. Arch, suisse Neur. et Psych. 44, 119–150 (1939).

    Google Scholar 

  • Weston, J. A.: A radiographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 6, 279–310 (1963).

    PubMed  CAS  Google Scholar 

  • Weston, J. A.: The migration and differentiation of neural crest cells. Adv. Morphogen. 8, 41–114 (1970).

    CAS  Google Scholar 

  • Weston, J. A., Butler, S.L.: Temporal factors affecting localization of neural crest cells in the chicken embryo. Dev. Biol. 14, 246–266 (1966).

    PubMed  CAS  Google Scholar 

  • Wright, M. R.: The lateral line system of sense organs. Quart. Rev. Biol. 26, 264–280 (1951).

    PubMed  CAS  Google Scholar 

  • Yates, R. D.: A study of cell division in chick embryonic ganglia. J. exp. Zool. 147, 167–182 (1961).

    PubMed  CAS  Google Scholar 

  • Zelenä, J.: The morphogenetic influence of innervation on the ontogenetic development of muscle spindles. J. Embryol. exp. Morph. 5, 283–292 (1957).

    Google Scholar 

  • Zelenà, J., Soukup, T.: The differentiation of intrafusal fibre types in rat spindles after motor denervation. Cell Tiss. Res. 153, 115–136 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Hughes, A.F., Carr, V.M. (1978). The Interaction of Periphery and Center in the Development of Dorsal Root Ganglia. In: Jacobson, M. (eds) Development of Sensory Systems. Handbook of Sensory Physiology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66880-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66880-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66882-1

  • Online ISBN: 978-3-642-66880-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics