Skip to main content

Transport of Sugar

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

The classical experiments of Monod’s group (Cohen and Monod 1957) have made biochemists aware of the importance of transport as the first biochemical reaction in the metabolism of a substance. Though the transport of substances through membranes occurs without a permanent alteration of its chemical structure (there are only a few exceptions), the reaction sequences leading to transport or accumulation can be regarded as biochemical since they are catalyzed by proteins with specific binding sites. The similarity of a transport reaction and a chemical reaction is most evident from Mitchell’s work on the mitochondrial proton-translocating ATPase, an enzyme whose physiological function is to convert osmotic energy to chemical energy (and vice versa) by a controlled transport reaction (e.g., Mitchell 1974). With this enzyme, the hydrolysis of ATP inevitably results in proton transport and proton transport inevitably results in ATP synthesis, and both phenomena of this one enzymatic reaction can only be separated by disturbance of the protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlers J, Ahr E, Seyfarth A (1978) Kinetic characterization of plasma membrane ATPase from Saccharomyces cerevisiae. Mol Cell Biochem 22: 39–49

    Article  PubMed  CAS  Google Scholar 

  • Amanuma H, Hoh J, Anraku Y (1977) Proton-dependent binding of proline to carrier in Escherichia coli membrane. FEBS Lett 78: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Kotyk A (1969) Glucose-6-phosphate as regulator of monosaccharide transport in baker’s yeast. FEBS Lett 2: 333–335

    Article  PubMed  CAS  Google Scholar 

  • Baden DJ, Mende TJ (1978) Glucose transport and metabolism in Gymnodinium breve. Phytochemistry 17: 1553–1558

    Article  CAS  Google Scholar 

  • Baker SF, Widdas WF (1973) The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model J Physiol 231: 143–165

    PubMed  CAS  Google Scholar 

  • Beauclerk AAD, Smith AJ (1978) Transport of D-glucose and 3-0-methyl-D-glucose in the cyanobacteria Aphanocapsa 6714 and Nostoc strain Mac. Eur J Biochem 72: 187–197

    Article  Google Scholar 

  • Beck JC, Sacktor B (1978) The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 253: 5531–5535

    PubMed  CAS  Google Scholar 

  • Becker JU, Betz A (1972) Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim Biophys Acta 274: 584–597

    Article  PubMed  CAS  Google Scholar 

  • Belaich A, Simonpietri P, Belaich J-P (1976) Microcalorimetric study of the binding of thiodigalactoside to the lactose permease M protein of Escherichia coli. J Biol Chem 251: 6735–6738

    PubMed  CAS  Google Scholar 

  • Bellando M, Trotta A, Bonetti A, Colombo R, Lado P, Marrè E (1979) Dissociation of H+-extrusion from K+ uptake by means of lipophilic cations. Plant Cell Environ 2: 39–48

    Article  Google Scholar 

  • Bentaboulet M, Robin A, Kepes A (1979) Artifically induced active transport of amino acid driven by the efflux of a sugar via a heterologous transport system in de-energized Escherichia coli. Biochem J 178: 103–107

    PubMed  CAS  Google Scholar 

  • Bieleski RL (1977) Accumulation of sorbitol and glucose by leaf slices of Rosaceae. Aust J Plant Physiol 4: 11–24

    Article  CAS  Google Scholar 

  • Blaustein MP, King AC (1976) Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: Experimental observations and theoretical consideration. J Membr Biol 30: 153–173

    Article  PubMed  CAS  Google Scholar 

  • Boehler RA, Danforth WF (1968) Glucose utilization by Euglena gracilis var. bacillaris: Short-term metabolic studies. J Protozool 15: 153–158

    PubMed  CAS  Google Scholar 

  • Bowen JE (1972) Sugar transport in immature internodal tissue of sugarcane. I. Mechanism and kinetics of accumulation. Plant Physiol 49: 82–86

    Article  PubMed  CAS  Google Scholar 

  • Bowen JE, Hunter JE (1972) Sugar transport in immature internodal tissue of sugarcane. II. Mechanism of sucrose transport. Plant Physiol 49: 789–793

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Slayman CW (1977) Characterization of plasma membrane adenosine triphosphatase of Neurospora crassa. J Biol Chem 252: 3357–3363

    PubMed  CAS  Google Scholar 

  • Bowman BJ, Mainzer SE, Allen KE, Slayman CW (1978) Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta 512: 13–28

    Article  PubMed  CAS  Google Scholar 

  • Britton H (1964) Permeability of the human red cell to labelled glucose. J Physiol 170: 1–20

    PubMed  CAS  Google Scholar 

  • Brocklehurst R, Gardner D, Eddy AA (1977) The absorption of protons with a-methyl glucoside and a-thioethyl glucoside by the yeast N.C.Y.C.240. Evidence against the phosphorylation hypothesis. Biochem J 162: 591–599

    PubMed  CAS  Google Scholar 

  • Budd K (1976) Uptake and metabolism of D-glucose by Neocosmospora vasinfecta. Plant Physiol 58: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Cameron-Mills V, Duffus CM (1979a) Sucrose transport in isolated immature barley embryos. Ann Bot (London) 43: 559–569

    CAS  Google Scholar 

  • Cameron-Mills V, Duffus CM (1979b) Hexose transport in isolated immature barley embryos. Ann Bot (London) 44: 485–494

    Google Scholar 

  • Canh DS, Horâk J, Kotyk A, Rihovâ L (1975) Transport of acyclic polyols in Saccharomyces cerevisiae. Folia Microbiol (Prague) 20: 320–325

    Article  CAS  Google Scholar 

  • Carlier J (1975) CinĂ©tique multiphasique de l’absorption du 3-O-methyl-D-glucose par des disques foliaires de Pelargonium zonale (L) Aiton. Physiol Veg 13: 445–454

    CAS  Google Scholar 

  • Chansang H, Cooksey KE (1979) Mannose transport in Amphora coffeaeformis var. perpu- silla (Bacillariophyceae). Can J Microbiol 25: 605–610

    Article  PubMed  CAS  Google Scholar 

  • Cho B-H, Komor E (1980) The role of potassium in charge compensation for sucrose- proton-symport by cotyledons of Ricinus communis. Plant Sci Lett 17: 425–435

    Article  CAS  Google Scholar 

  • Christensen HN (1972) Does the stoichiometry of coupling necessarily reveal the composition of the ternary complex? In: Heinz E (ed), Na+-linked transport of organic solutes. Springer, Berlin Heidelberg New York, pp 161–169

    Chapter  Google Scholar 

  • Christensen HN, Handlogten ME, Thomas EL (1969) Sodium-facilitated reactions of neutral amino acids with a cationic amino acid transport system. Proc Natl Acad Sci USA 63: 948–955

    Article  PubMed  CAS  Google Scholar 

  • Christensen MS, Cirillo VP (1972) Yeast membrane vesicles: Isolation and general characteristics. J Bacteriol 110: 1190–1205

    PubMed  CAS  Google Scholar 

  • Cirillo VP (1968a) Relationship between sugar structure and competition for the sugar transport system in baker’s yest. J Bacteriol 95:603–611

    Google Scholar 

  • Cirillo VP (1968b) Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol 95: 1727–1731

    Google Scholar 

  • Cohen GN, Monod J (1957) Bacterial permeases. Bacteriol Rev 21: 169–194

    PubMed  CAS  Google Scholar 

  • Colombo R, Michelis de MI, Lado P (1978) 3-O-methyl glucose uptake stimulation by auxin and by fusicoccin in plant materials and its relationship with proton extrusion. Planta 138: 249–256

    Google Scholar 

  • Crabeel M, Grenson M (1970) Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem 14: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Crane RK (1962) Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc 21: 891–895

    PubMed  CAS  Google Scholar 

  • Crane RK, Malathi P, Preiser H (1976) Reconstitution of a specific Na+-D-glucose transport in liposomes by Triton X-100-extracted proteins from purified brush border membranes of rabbit kidney cortex. FEBS Lett 67: 214–216

    Article  PubMed  CAS  Google Scholar 

  • D’Auzac J (1977) ATPase membranaire de vacuoles lysosomales: les lutoides du latex d’Hevea brasiliensis. Phytochemistry 16: 1881–1885

    Article  Google Scholar 

  • D’Auzac J, Lioret C (1974) Mise en Ă©vidence d’un mecanisme d’accumulation du citrate dans les lutoides du latex d’Hevea brasiliensis. Physiol Veg 12: 617–635

    Google Scholar 

  • Davson H, Danielli JF (1970) The permeability of natural membranes. Hafner Publ Co Darien, Conn

    Google Scholar 

  • Deák T (1978) On the existence of H+-symports in yeasts. A comparative study. Arch Microbiol 116: 205–211

    Article  Google Scholar 

  • Deák T, Kotyk A (1968) Uphill transport of monosaccharides in Candida beverwijkii. Folia Microbiol (Prague) 13: 205–211

    Article  Google Scholar 

  • Decker M, Tanner W (1972) Respiratory increase and active hexose uptake of Chlorella vulgaris. Biochim Biophys Acta 266: 661–669

    Article  PubMed  CAS  Google Scholar 

  • Decker M, Tanner W (1975) Rapid release of the fatty acids during cell breakage and their effects on a sugar proton cotransport system in Chlorella vulgaris. FEBS Lett 60: 346–348

    Article  PubMed  CAS  Google Scholar 

  • Deshusses J, Reber G (1977) Asymmetry of the myo-inositol transport system in Klebsiella aerogenes. Energy is necessary to create the asymmetry of the transport system. Eur J Biochem 72: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Delhez J, Dufour J-P, Thines D, Goffeau A (1977) Comparison of the properties of plasma membrane-bound and mitochondria-bound ATPases in the yeast Schizosaccharomyces pombe. Eur J Biochem 79: 319–328

    Article  PubMed  CAS  Google Scholar 

  • Delrot S, Bonnemain J-L (1979) Échanges H+-Rb+ et cotransport H+-glucide dans les tissus foliaires de Vicia faba L. CR Acad Sci 288: 71–76

    CAS  Google Scholar 

  • Doll S, Rodier F, Willenbrink J (1979) Accumulation of sucrose in vacuoles isolated from red beet tissue. Planta 144: 401–411

    Article  Google Scholar 

  • Dufour J-P, Goffeau A (1978) Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J Biol Chem 253: 7026–7032

    PubMed  CAS  Google Scholar 

  • Edelman J, Schoolar AI, Bonner WB (1971) Permeability of sugar-cane chloroplasts to sucrose. J Exp Bot 22: 534–545

    Google Scholar 

  • Ehwald R, Sammler P, Goring H (1973) Different affinities of the α- and β-anomers of D-glucose, D-mannose and D-xylose for the glucose uptake system of baker’s yeast. Folia Microbiol (Prague) 18: 102–117

    Article  CAS  Google Scholar 

  • Ehwald R, Meshcheryakov AB, Kholodova VP (1979) Hexose uptake by storage parenchyma of potato and sugar beet at different concentrations and different thicknesses of tissue slices. Plant Sci Lett 16: 181–188

    Article  CAS  Google Scholar 

  • Faust RS, Orcutt AR, Shearin SJ (1971) Uptake of 3-0-methyl-14C-D-glucose by a unicellular blue-green alga. Planta 100: 360–364

    Article  CAS  Google Scholar 

  • Fenzl F, Decker M, HaaB D, Tanner W (1977) Characterization and partial purification of an inducible protein related to hexose proton cotransport of Chlorella vulgaris. Eur J Biochem 72: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Flagg JL, Wilson TH (1978) A novel type of coupling between proline and galactoside transport in Escherichia coli. Membrane Biochem 1: 61–72

    Article  CAS  Google Scholar 

  • Fox CF, Carter JR, Kennedy EP (1967) Genetic control of the membrane protein component of the lactose transport system of Escherichia coli. Proc Natl Acad Sci USA 57: 698–705

    Article  PubMed  CAS  Google Scholar 

  • Gachelin G (1970) Studies on the a-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of a-methylglucoside 6-phosphate. Eur J Biochem 16: 342–357

    Article  PubMed  CAS  Google Scholar 

  • Gayler KR, Glasziou KT (1972) Sugar accumulation in sugar cane. Carrier mediated active transport of glucose. Plant Physiol 49: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Geek P, Heinz E (1976) Coupling in secondary transport: Effect of electrical potentials on the kinetics of ion-linked cotransport. Biochim Biophys Acta 443: 49–63

    Article  Google Scholar 

  • Gier De J, Manderslot J J, Deenen Van LLM (1968) Lipid composition and permeability of liposomes. Biochim Biophys Acta 150: 666–675

    Article  PubMed  Google Scholar 

  • Gill CO, Ratledge C (1973) Inhibition of glucose assimilation and transport by n-decane and other n-alkanes in Candida 107. J Gen Microbiol 75: 11–22

    PubMed  CAS  Google Scholar 

  • Glasziou KT, Gayler KR (1972) Storage of sugar in stalks of sugar cane. Bot Rev 38: 471–490

    Article  Google Scholar 

  • Goldner AM, Schultz SG, Curran PF (1969) Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol 53: 362–383

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D, Hansen U-P, Scott W, Slayman CL (1978) Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J Membr Biol 39: 333–368

    Article  PubMed  CAS  Google Scholar 

  • Grant BR, Beevers H (1964) Absorption of sugars by plant tissues. Plant Physiol 39: 78–85

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg J, Sharma PR, Deshusses J (1978) D-glucose transport in Trypanosoma brucei. D-glucose transport is the rate-limiting step of its metabolism. Eur J Biochem 89: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Griineberg A, Komor E (1976) Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Biochim Biophys Acta 448: 133–142

    Article  Google Scholar 

  • Guy M, Reinhold L (1974) The uptake of 2-deoxy-D-glucose by isolated Ricinus cotyledons. Physiol Plant 31: 4–10

    Article  CAS  Google Scholar 

  • HaaB D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Characteristics of induction and turnover. Plant Physiol 53: 14–20

    Article  Google Scholar 

  • Hamilton WA (1977) Energy coupling in substrate and group translocation. In: Hamilton WA, Haddock BA (eds) Microbial energetics. Cambridge Univ Press, London New York, pp 185–216

    Google Scholar 

  • Hampp R, Schmidt HW (1976) Changes in envelope permeability during chloroplast development. Planta 129: 69–73

    Article  CAS  Google Scholar 

  • Hampson SE, Loomis RS, Rains DW (1978a) Characteristics of sugar uptake in hypocotyls of cotton. Plant Physiol 62: 846–850

    Google Scholar 

  • Hampson SE, Loomis RS, Rains DW (1978b) Regulation of sugar uptake in hypocotyls of cotton. Plant Physiol 62: 851–855

    Google Scholar 

  • Hancock JG (1970) Properties and formation of the squash high-affinity glucose transport system. Can J Bot 48: 1515–1520

    Article  CAS  Google Scholar 

  • Harold FM (1977) Membranes and energy transduction in bacteria. Curr Top Bioenerg 6: 83 - 149

    CAS  Google Scholar 

  • Harris G, Thompson CC (1961) The uptake of nutrients by yeasts. III. The maltose permease of a brewing yeast. Biochim Biophys Acta 52: 176–183

    Article  PubMed  CAS  Google Scholar 

  • Haskovec C, Kotyk A (1973) Transport systems for acyclic polyols and monosaccharides in Torulopsis Candida. Folia Microbiol (Prague) 18: 118–124

    Article  CAS  Google Scholar 

  • Hauer R, Hofer M (1978) Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeast Rhodotorula gracilis (Rhodosporidium toruloides). J Membr Biol 43: 335–349

    Article  CAS  Google Scholar 

  • Hazelbauer GL, Adler J (1971) Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (London) New Biol 230: 101–104

    CAS  Google Scholar 

  • Heath RL (1977) Penetration of mannitol into the intracellular space of Chlorella sorokiniana. Plant Physiol 59: 911–914

    Article  PubMed  CAS  Google Scholar 

  • Heath RL (1979) A constitutive enzyme system for glucose transport in Chlorella sorokiniana. Plant Physiol 64: 224–227

    Article  PubMed  CAS  Google Scholar 

  • Hennaut C, Hilger F, Grenson M (1970) Space limitation for permease insertion in the cytoplasmic membrane of Saccharomyces cerevisiae. Biochem Biophys Res Commun 39: 666–671

    Article  PubMed  CAS  Google Scholar 

  • Heyser W (1980) Phloem loading in the maize leaf. Ber Deutsch Bot Ges 93: 221–228

    CAS  Google Scholar 

  • Heyser W, Heyser R, Eschrich W, Leonard OA, Rautenberg M (1976) The influence of externally applied organic substances on phloem translocation in detached maize leaves. Planta 132: 269–277

    Article  CAS  Google Scholar 

  • Hodges TK (1976) ATPases associated with membranes of plant cells. In: Liittge U, Pitman MG (eds) Encyclopedia of plant physiology, new series, vol IIA, Springer, Berlin Heidelberg New York, pp 260–283

    Google Scholar 

  • Hofer M (1971) Transport of monosaccharides in Rhodotorula gracilis in the absence of metabolic energy. Arch Mikrobiol 80: 50–61

    Article  PubMed  CAS  Google Scholar 

  • Hofer M (1970) Mobile membrane carrier for monosaccharide transport in Rhodotorula gracilis. J Membr Biol 3: 73–82

    Article  Google Scholar 

  • Hofer M, Kotyk A (1968) Tight coupling of monosaccharide transport and metabolism in Rhodotorula gracilis. Folia Microbiol (Prague) 13: 197–204

    Article  CAS  Google Scholar 

  • Hofer M, Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J 172: 15–22

    PubMed  CAS  Google Scholar 

  • Holden JT, Bunch JM (1972) Stimulation by fatty acids of amino acid accumulation in panthothenic acid depleted Lactobacillus plantarum. Biochem Biophys Res Commun 46: 437–442

    Article  PubMed  CAS  Google Scholar 

  • Horak J, Kotyk A (1969) Anomalous uptake of D-ribose by Rhodotorula gracilis. Folia Microbiol (Prague) 14: 291–296

    Article  CAS  Google Scholar 

  • Horak J, Kotyk A (1973) Isolation of a glucose-binding lipoprotein from yeast plasma membrane. Eur J Biochem 32: 36–41

    Article  PubMed  CAS  Google Scholar 

  • Horenstein EA, Cantino EC (1964) An effect of light on glucose uptake by the fungus Blastocladiella britannica. J Gen Microbiol 37: 59–65

    PubMed  CAS  Google Scholar 

  • Hsu CC, Fox CF (1970) Induction of the lactose transport system in a lipid-synthesis-defective mutant of Escherichia coli. J Bacteriol 103: 410–416

    PubMed  CAS  Google Scholar 

  • Humphreys TE (1973) Sucrose transport at the tonoplast. Phytochemistry 12: 1211–1219

    Article  CAS  Google Scholar 

  • Humphreys TE (1978) A model for sucrose transport in the maize scutellum. Phytochemistry 17: 679–684

    Article  CAS  Google Scholar 

  • Hutchings VM (1978a) Sucrose and proton cotransport in Ricinus cotyledons. I. H+-influx associated with sucrose uptake. Planta 138: 229–235

    Google Scholar 

  • Hutchings VM (1978b) Sucrose and proton cotransport in Ricinus cotyledons. II. H+-efflux and associated K+ uptake. Planta 138: 237–241

    Google Scholar 

  • Janda S, Hedenstrom von M (1979) Uptake of disaccharides by the aerobic yeast Rhodotorula glutinis. Hydrolysis of /?-fructosides and trehalose. Arch Microbiol 101: 273–280

    Article  Google Scholar 

  • Jolley ET, Jones AK, Hellebust J A (1976) A description of glucose uptake in Navicula pelliculosa (Breb.) Hilse including a brief comparison with an associated Flavobacterium sp. Arch Microbiol 109: 127–133

    Article  PubMed  CAS  Google Scholar 

  • Jones MJK, Novacky A, Dropkin VH (1975) Transmembrane potentials of parenchyma cells and nematode-induced transfer cells. Protoplasma 85: 15–37

    Article  Google Scholar 

  • Kasahara M, Hinkle PC (1977) Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem 252: 7384–7390

    PubMed  CAS  Google Scholar 

  • Keifer DW, Spanswick RM (1979) Correlation of adenosine triphosphate levels in Chara corallina with the activity of the electrogenic pump. Plant Physiol 64: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Kennedy EP, Rumley MK, Armstrong JB (1974) Direct measurement of the binding of labeled sugars to the lactose permease M protein. J Biol Chem 249: 33–37

    PubMed  CAS  Google Scholar 

  • Kepes A (1971) The β-galactoside permease of Escherichia coli. J Membr Biol 4:87–112 KlingmĂĽller W, Huh R (1972) Sugar transport in Neurospora crassa. Eur J Biochem 25: 141–146

    Google Scholar 

  • KlingmĂĽller W, Huh R (1972) Sugar transport in Neurospora crassa. Eur J Biochem 25:141–146

    Google Scholar 

  • Klip A, Grinstein S, Semenza G (1979) Transmembrane disposition of the phlorizin binding protein of intestinal brush borders. FEBS Lett 99: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Klöppel R, Höfer M (1976a) Transport und Umsatz von Polyalkoholen bei der Hefe Rhodotorula gracilis (glutinis). I. Konstitutiver Polyalkoholtransport. Arch Microbiol 107: 329–334

    Google Scholar 

  • Klöppel R, Höfer M (1976b) Transport und Umsatz von Polyalkoholen bei der Hefe Rhodotorula gracilis (glutinis). II. Induzierbarer Transport und Abbau von Pentitolen. Arch Microbiol 107: 335–342

    Google Scholar 

  • Koch AL (1971) Energy expenditure is obligatory for the downhill transport of galactosides. J Mol Biol 59: 447–459

    Article  PubMed  CAS  Google Scholar 

  • Kolber AR, Stein WD (1966) Identification of a component of a transport “carrier” system: isolation of the permease expression of the lac operon of Escherichia coli. Nature (London) 209: 691–694

    Article  CAS  Google Scholar 

  • Komor B, Komor E, Tanner W (1974) Transformation of a strictly coupled active transport system into a facilitated diffusion system by nystatin. J Membr Biol 17: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Komor E (1973) Proton-coupled hexose transport in Chlorella vulgaris. FEBS Lett 38:16–18

    Google Scholar 

  • Komor E (1977) Sucrose uptake by cotyledons of Ricinus communis L.: characteristics, mechanism, and regulation. Planta 137: 119–131

    Google Scholar 

  • Komor E, Tanner W (1971) Characterization of the active hexose transport system of Chlorella vulgaris. Biochim Biophys Acta 241: 170–179

    Article  PubMed  CAS  Google Scholar 

  • Komor E, Tanner W (1974 a) The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Eur J Biochem 44: 219–223

    Google Scholar 

  • Komor E, Tanner W (1974b) The hexose-proton cotransport system of Chlorella. pH-dependent change in Km-values and translocation constants of the uptake system. J Gen Physiol 64: 568–581

    Google Scholar 

  • Komor E, Tanner W (1976) The determination of the membrane potential of Chlorella vulgaris. Eur J Biochem 70: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Komor E, HaaĂź D, Tanner W (1972) Unusual features of the active hexose uptake system of Chlorella vulgaris. Biochim Biophys Acta 266: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Komor E, Loos E, Tanner W (1973a) A confirmation of the proposed model for the hexose uptake system of Chlorella vulgaris. Anaerobic studies in the light and in the dark. J Membr Biol 12: 89–99

    Google Scholar 

  • Komor E, HaaĂź D, Komor B, Tanner W (1973b) The active hexose-uptake system of Chlorella vulgaris. Km-values for 6-deoxyglucose influx and efflux and their contribution to sugar accumulation. Eur J Biochem 39: 193–200

    Google Scholar 

  • Komor E, Rotter M, Tanner W (1977) A proton-cotransport system in a higher plant: sucrose transport in Ricinus communis. Plant Sci Lett 9: 153–162

    Article  CAS  Google Scholar 

  • Komor E, Weber H, Tanner W (1978) Essential sulfhydryl group in the transport-catalyzing protein of the hexose-proton cotransport system of Chlorella. Plant Physiol 61: 785–786

    Article  PubMed  CAS  Google Scholar 

  • Komor E, Schwab WGW, Tanner W (1979a) The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochim Biophys Acta 555: 524–530

    Google Scholar 

  • Komor E, Weber H, Tanner W (1979b) Greatly decreased susceptibility of non-metabolizing cells towards detergents. Proc Natl Acad Sci USA 76: 1814–1818

    Google Scholar 

  • Komor E, Rotter M, Waldhäuser J, Martin E, Cho BH (1980) Sucrose protein symport for phloem loading in the Ricinus seedling. Ber Deutsch Bot Ges 93: 211–219

    CAS  Google Scholar 

  • Kotyk A (1967 a) Properties of the sugar carrier in baker’s yeast. II. Specificity of transport. Folia Microbiol (Prague) 12: 121–131

    Google Scholar 

  • Kotyk A (1967 b) Mobility of the free and of the loaded monosaccharide carrier in Saccharo- myces cerevisiae. Biochim Biophys Acta 135:112–119

    Google Scholar 

  • Kotyk A, Höfer M (1968) Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochim Biophys Acta 102: 410–422

    Google Scholar 

  • Kotyk A, Michaljanicova D (1969) Densitometry of yeast cells and protoplasts during sugar uptake. Folia Microbiol (Prague) 14: 62–69

    Article  CAS  Google Scholar 

  • Kotyk A, Michaljanicova D (1979) Uptake of trehalose by Saccharomyces cerevisiae. J Gen Microbiol 110: 323–332

    PubMed  CAS  Google Scholar 

  • Kotyk A, Struzinsky R (1977) Effect of high substrate concentrations on active transport parameters. Biochim Biophys Acta 470: 484–491

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A, Michaljanicova D, Veres K, Soukupovâ V (1975) Transport of 4-deoxy- and 6-deoxy-D-glucose in baker’s yeast. Folia Microbiol (Prague) 20: 496–503

    Article  CAS  Google Scholar 

  • Kriedemann P, Beevers H (1967a) Sugar uptake and translocation in the castor bean seedling. I. Characteristics of transfer in intact and excised seedlings. Plant Physiol 42: 161–173

    Google Scholar 

  • Kriedemann P, Beevers H (1967b) Sugar uptake and translocation in the castor bean seedling. II. Sugar transformations during uptake. Plant Physiol 42: 174–180

    Google Scholar 

  • Kuo S-C, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. III. Charac¬teristics of galactose uptake in transferaseless cells: Evidence against transport-associated phosphorylation. J Bacteriol 103: 679–685

    PubMed  CAS  Google Scholar 

  • Kuo S-C, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galacto-kinaseless cells. J Bacteriol 103: 671–678

    Google Scholar 

  • Kusch M, Wilson TH (1973) Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion. Biochim Biophys Acta 311: 109–122

    Article  PubMed  CAS  Google Scholar 

  • Lagarde AE, Stoeber FR (1975) The energy-coupling controlled efflux of 2-keto-3-deoxy-D- gluconate in Escherichia coli K12. Eur J Biochem 55: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Lambert C (1975) Influence de l’ATP sur le pH intralutoidique et sur la pĂ©nĂ©tration du citrate dans les lutoids du latex d’Hevea brasiliensis. CR Acad Sci Ser D 281: 1705–1708

    CAS  Google Scholar 

  • Lancaster JR, Hinkle PC (1977) Studis on the β-galactoside transporter in inverted membrane vesicles of Escherichia coli. J Biol Chem 252: 7657–7661

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1978) Coupling of aspartate and serine transport to the transmembrane electrochemical gradient for sodium ions in Halobacterium halobium. Translocation stoichiometrics and apparent cooperativity. Biochemistry 17: 3011–3018

    Article  PubMed  CAS  Google Scholar 

  • Lemasters J J, Sowers AE (1979) Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem 254: 1248–1257

    PubMed  CAS  Google Scholar 

  • Lin ECC (1970) The genetics of bacterial transport systems. Annu Rev Genet 4: 225–262

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Wagner GJ, Siegelman HW, Hind G (1977) Membrane-bound ATPase of intact vacuoles and tonoplasts from mature plant tissue. Biochim Biophys Acta 465: 110–117

    Article  PubMed  CAS  Google Scholar 

  • Linask J, Laties SG (1973) Multiphasic absorption of glucose and 3-O-methyl-glucose by aged potato slices.Plant Physiol 51: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Lo TCY (1979) The transfer of a bacterial transmembrane function to eucaryotic cells. J Biol Chem 254: 591–594

    PubMed  CAS  Google Scholar 

  • Long RA, Sprott GD, Labelle JL, Martin WG, Schneider M (1975) Thermal events associated with active membrane transport in Escherichia coli. Biochem Biophys Res Commun 64: 656–662

    Article  PubMed  CAS  Google Scholar 

  • Maloney PC (1979) Membrane H+-conductance of Streptococcus lactis. J Bacteriol 140: 197–205

    PubMed  CAS  Google Scholar 

  • Maretzki A, Thom M (1972a) Membrane transport of sugars in cell suspensions of sugarcane. I. Evidence for sites and specificity. Plant Physiol 49: 177–182

    Google Scholar 

  • Maretzki A, Thom M (1972b) The existence of two membrane transport systems for glucose in suspensions of sugarcane cells. Biochem Biophys Res Commun 47: 44–50

    Google Scholar 

  • Mark CG, Romano AH (1970) Properties of the hexose transport systems of Aspergillus nidulans. Biochim Biophys Acta 249: 216–226

    Google Scholar 

  • Martin E, Komor E (1980) Role of phloem in sucrose transport in Ricinus cotyledons. Planta 148: 367–373

    Article  CAS  Google Scholar 

  • Masiak SJ, LeFevre PG (1974) Effects of membrane steroid modification on human erythrocyte glucose transport. Arch Biochem Biophys 162: 442–447

    Article  PubMed  CAS  Google Scholar 

  • McDavid CR, Oworu OO, MacColl D (1977) 14C-fixation and translocation in two clones of sugarcane with contrasting rates of sucrose uptake in vitro. Ann Bot 41: 405–410

    Google Scholar 

  • McDermott CB, Jennings DH (1976) The relationship between the uptake of glucose and 3-O-methyl-glucose and soluble carbohydrate and polysaccharide in the fungus Dendryphiella salina. J Gen Microbiol 97: 193–209

    PubMed  CAS  Google Scholar 

  • Melchior DL, Czech MP (1979) Sensitivity of the adipocyte D-glucose transport system to membrane fluidity in reconstituted vesicles. J Biol Chem 254: 8144–8747

    Google Scholar 

  • Mian N, Anderson CE, Kent PW (1979) Effect of sulphated glycopeptides on kinetics of 3-O-methyl glucose and 2-deoxyglucose transport by epithelial cells isolated from rabbit small intestine. Eur J Biochem 97: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Michelis de MI, Radice M, Colombo R Lado P (1978) Evidence for an active transport of methyl-a-D-glucopyranoside in pea stem segments. Plant Sci Lett 12: 93–99

    Google Scholar 

  • Miersch J (1977) Transport of ribitol and D-glucose in the yeast Candida guillermondii. Folia Microbiol (Prague) 22: 363–372

    Article  CAS  Google Scholar 

  • Miller DM, Harun SH (1978) The kinetics of the active and de-energized transport of 3-O-methyl glucose in Ustilago maydis. Biochim Biophys Acta 514: 320–331

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1963) Molecule, group and electron translocation through natural membranes. In: Bell DJ, Grant JK (eds) Structure and function of the membranes and surfaces of cells. Cambridge Univ Press, London New York, pp 142–169

    Google Scholar 

  • Mitchell P (1974) A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett 43: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Devadathan MS (1979) Sugar transport in Coprinus cinereus. Biochim Biophys Acta 550: 515–526

    Article  PubMed  CAS  Google Scholar 

  • Murer H, Sigrist-Nelson K, Hopfer U (1975) On the mechanism of sugar and amino acid interaction in intestinal transport. J Biol Chem 250: 7392–7396

    PubMed  CAS  Google Scholar 

  • Neijssel OM, Hueting S, Tempest DW (1977) Glucose transport capacity is not the rate- limiting tep in the growth of some wild-type strains of Escherichia coli and Klebsiella aerogenes in chemostat culture. FEMS Microbiol Lett 2: 1–3

    Article  CAS  Google Scholar 

  • Nelson SO, Glover GI (1975) The essentiality of sulfhydryl groups to transport in Neurospora crassa. Arch Biochem Biophys 168: 483–489

    Article  PubMed  CAS  Google Scholar 

  • Newcomer HE, Miller DM, Quiocho FA (1979) Location of the sugar-binding site of L-arabinose-binding protein. Sugar derivative syntheses, sugar binding specificity, and difference Fourier analysis. J Biol Chem 254: 7529–7533

    PubMed  CAS  Google Scholar 

  • Nobel PS (1973) Mitochondrial permeability for alcohols, aldoses and amino acids. J Membr Biol 12: 287–299

    Article  PubMed  CAS  Google Scholar 

  • Novacky A, Ullrich-Eberius CI, Liittge U (1978) Membrane potential changes during transport of hexoses in Lemma gibba Gl. Planta 138: 263–270

    Article  CAS  Google Scholar 

  • Okada H, Halvorson HO (1964) Uptake of a-thioethyl D-glucopyranoside by Saccharomyces cerevisiae. II. General characteristics of an active transport system. Biochim Biophys Acta 82: 547–555

    Article  PubMed  CAS  Google Scholar 

  • Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci USA 76: 791–795

    Article  PubMed  CAS  Google Scholar 

  • Opekarova M, Kotyk A (1973) Uptake of sugars by tobacco callus tissue. Biol Plant 15: 312–317

    Article  CAS  Google Scholar 

  • Oworu OO, McDavid CR, MacColl D (1977) A comparison of rates of storage of sucrose in eight clones of sugar-cane as measured by sucrose uptake in vitro. Ann Bot (London) 41: 393–399

    CAS  Google Scholar 

  • Parr D, Edelman J (1976) Passage of sugars across the plasmalemma of carrot callus cells. Phytochemistry 15: 619–623

    Article  CAS  Google Scholar 

  • Pavlasova E, Harold FM (1969) Energy coupling in the transport of β-galactosides by Escherichia coli: Effect of proton conductors. J Bacteriol 98: 198–204

    PubMed  CAS  Google Scholar 

  • Peters PHJ, Borst-Pauwels SWFM (1979) Properties of plasma membrane ATPase and mitochondrial ATPase of Saccharomyces cerevisiae. Physiol Plant 46: 330–337

    Article  CAS  Google Scholar 

  • Postma PW, Roseman S (1976) The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta 457: 213–258

    Google Scholar 

  • Quiocho FA, Gilliland GL, Phillips GN (1977) The 2.8 Ă‚ resolution structure of the L-arabinose-binding protein from Escherichia coli. J Biol Chem 252: 5142–5149

    PubMed  CAS  Google Scholar 

  • Raboy B, Padan E (1978) Active transport of glucose and a-methylglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem 253: 3287–3291

    PubMed  CAS  Google Scholar 

  • Racusen RH, Galston AW (1977) Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions in Samanea pulvini. Planta 135: 57–62

    Article  CAS  Google Scholar 

  • Raven JA (1976) Active influx of hexose in Hydrodictyon africanum. New Phytol 76:189–194 Raven JA, Smith FA (1974) Significance of hydrogen ion transport in plant cells. Can J Bot 52: 1035–1048

    Article  Google Scholar 

  • Raven JA, Smith FA (1974) Significance of hydrogen ion transport in plant cells. Can J Bot 52:1035–1048

    Google Scholar 

  • Read BD, McElhaney RN (1975) Glucose transport in Acholeplasma laidlawii B: Dependence on the fluidity and physical state of membrane lipids. J Bacteriol 123: 47–55

    PubMed  CAS  Google Scholar 

  • Reber J, Mermod M, Deshusses J (1977) Transport of cyclitols by proton symport in Klebsiella aerogenes. Eur J Biochem 72: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Riccio P, Aquila H, Klingenberg M (1975) Solubilization of the carboxy-atractylate binding protein from mitochondria. FEBS Lett 56: 129–132

    Article  CAS  Google Scholar 

  • Richey DP, Lin ECC (1972) Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J Bacteriol 112: 784–790

    PubMed  CAS  Google Scholar 

  • Robbie JP, Wilson TH (1969) Transmembrane effects of β-galactosides on thiomethyl-Ăź-galactoside transport in Escherichia coli. Biochim Biophys Acta 173: 234–244

    Article  PubMed  CAS  Google Scholar 

  • Rottem S, Cirillo VP, Kruyff de B, Shinitzky M, Razin S (1973) Cholesterol in Mycoplasma membranes. Correlation of enzymic and transport activities with physical state of lipids in membranes of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations. Biochim Biophys Acta 323: 509–519

    Article  PubMed  CAS  Google Scholar 

  • Rubin PM, Zetooney E, McGowan RE (1977) Uptake and utilization of sugar-phosphates by Anabaena flos-aquae. Plant Physiol 60: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Sacher JA (1966) The regulation of sugar uptake and accumulation in bean pod tissue. Plant Physiol 41: 181–189

    Article  PubMed  CAS  Google Scholar 

  • Scarborough GA (1970a) Sugar transport in Neurospora crassa. J Biol Chem 245:1694–1698

    Google Scholar 

  • Scarborough GA (1970b) Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem 245: 3985–3987

    Google Scholar 

  • Scarborough GA (1971) Sugar transport in Neurospora crassa. III. An inositol requirement for the function of the glucose active transport system. Biochem Biophys Res Commun 43: 968–975

    Article  PubMed  CAS  Google Scholar 

  • Scarborough GA (1976) The Neurospora plasma membrane ATPase is an electrogenic pump. Proc Natl Acad Sci USA 73: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Scarborough GA (1977) Properties of the Neurospora crassa plasma membrane ATPase. Arch Biochem Biophys 180: 384–393

    Article  PubMed  CAS  Google Scholar 

  • Schäfer G, Heber U, Heidt HW (1977) Glucose transport into spinach chloroplasts. Plant Physiol 60: 286–289

    Article  PubMed  Google Scholar 

  • Schneider RP, Wiley WR (1971a) Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol 106: 479–486

    PubMed  CAS  Google Scholar 

  • Schneider RP, Wiley WR (1971b) Regulation of sugar transport in Neurospora crassa. J Bacteriol 106: 487–492

    PubMed  CAS  Google Scholar 

  • Scholes P, Mitchell P (1970) Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate. J Bioenerg 1: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–718

    PubMed  CAS  Google Scholar 

  • Schwab WJW, Komor E (1978) A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. FEBS Lett 87: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Seaston A, Inkson C, Eddy A A (1973) The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J 134: 1031–1043

    PubMed  CAS  Google Scholar 

  • Serrano R (1977) Energy requirements for maltose transport in yeast. Eur J Biochem 80: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1978) Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem 22: 51–63

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Delafuente G (1974) Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem 5: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Shanahan MF, Czech MP (1977) Partial purification of the D-glucose transport system in rat adipocyte plasma membranes. J Biol Chem 252: 6554–6561

    PubMed  CAS  Google Scholar 

  • Singh R, Juliano BO (1977) Free sugars in relation to starch accumulation in developing rice grain. Plant Physiol 59: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Sistrom WR (1958) On the physical state of the intracellularly accumulated substrates of Ăź-galactoside permease in Escherichia coli. Biochim Biophys Acta 29: 579–587

    Article  PubMed  CAS  Google Scholar 

  • Slayman CL, Slayman CW (1974) Depolarization of the plasma membrane of Neurospora during active transport of glucose: Evidence for a proton-dependent cotransport system. Proc Natl Acad Sci USA 71: 1935–1939

    Article  PubMed  CAS  Google Scholar 

  • Slayman CL, Long WS, Lu CYM (1973) The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol 14: 305–338

    Article  PubMed  CAS  Google Scholar 

  • Smith FA (1967) Links between glucose uptake and metabolism in Nitella translucens. J Exp Bot 18: 348–358

    Article  CAS  Google Scholar 

  • Sovonick SA, Geiger DR, Fellows RJ (1974) Evidence for active phloem loading in the minor veins of sugar beet. Plant Physiol 54: 886–891

    Article  PubMed  CAS  Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Academic Press, London New York

    Google Scholar 

  • Stubbs J, Horwitz A, Moses V (1973) Studies on the β-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon. J Bacteriol 116: 131–140

    PubMed  CAS  Google Scholar 

  • Surikow T (1971) The uptake of sugars by Chara corallina. J Exp Bot 22: 526–533

    Article  CAS  Google Scholar 

  • Swaminathan N, Eichholz A (1973) Studies on the mechanism of active intestinal transport of glucose. Biochim Biophys Acta 298: 724–731

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Komor E (1975) Hexose-proton cotransport of Chlorella vulgaris. In: Gardos G, Szasz I (eds) Biomembranes: Structure and function. Elsevier/North Holland, Amsterdam New York, pp 145–154

    Google Scholar 

  • Taylor FJ (1959) The absorption of glucose by Scenedesmus quadricauda. I. Some kinetic aspects. Proc R Soc London Ser B151: 400–418

    Google Scholar 

  • Teather RM, MĂĽller-Hill B, Abrutsch U, Aichele G, Overath P (1978) Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol Gen Genet 159: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Turkina MV, Sokolova SV (1972) Izutschenije membranogo transporta sacharozi w rastitelnoj tkani. Fiziol Rast 19: 912–919

    CAS  Google Scholar 

  • Uebelmann G (1978) Samenkeimung bei Trigonella foenum-graecum L.: Aufnahme der beim Galaktomannan im Endosperm freiwerdenden Zucker durch den Embryo. Z Pflanzenphysiol 88: 235–253

    CAS  Google Scholar 

  • Ullrich-Eberius CI, Novacky A, LĂĽttge U (1978) Active hexose uptake in Lemna gibba Gl. Planta 139: 149–153

    Article  CAS  Google Scholar 

  • Villereal ML, Cook JS (1978) Regulation of active aminoacid transport by growth-related changes in membrane potential in human fibroblast. J Biol Chem 253: 8257–8262

    PubMed  CAS  Google Scholar 

  • Waldhauser J, Komor E (1978) Sucrose transport by seedlings of Ricinus communis L.: the export of sucrose from the cotyledons to the hypocotyl as a function of sucrose concentration in the cotyledons. Plant Cell Environ 1: 45–49

    Article  Google Scholar 

  • Walker NA, Smith FA (1975) Intracellular pH in Chara corallina measured by DMO distribution. Plant Sci Lett 4: 125–132

    Article  CAS  Google Scholar 

  • Wardzala LJ, Cushman SW, Salans LB (1978) Mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol Chem 253: 8002–8005

    PubMed  CAS  Google Scholar 

  • Wehrli E, Boehm C, Fuhrmann GF (1975) Yeast plasma membrane vesicles suitable for transport studies. J Bacteriol 124: 1594–1597

    PubMed  CAS  Google Scholar 

  • West IC, Mitchel P (1972) Proton-coupled Ăź-galactoside translocation in non-metabolizing Escherichia coli. J Bioenerg 3: 445–462

    Article  PubMed  CAS  Google Scholar 

  • Whitesell JH, Humphreys TE (1972) Sugar uptake in the maize scutellum. Phytochemistry 11: 2139–2147

    Article  CAS  Google Scholar 

  • Willenbrink J, Doll S (1979) Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue. Kinetics and specificity of the sucrose uptake system. Planta 147: 159–162

    Article  CAS  Google Scholar 

  • Willsky GR (1979) Characterization of the plasma membrane Mg2+-ATPase from the yeast, Saccharomyces cerevisiae. J Biol Chem 254: 3326–3332

    PubMed  CAS  Google Scholar 

  • Wilson G, Rose SP, Fox RF (1970) The effect of membrane lipid unsaturation on glycoside transport. Biochem Biophys Res Commun 38: 617–622

    Article  PubMed  CAS  Google Scholar 

  • Wilson TH, Kusch M (1972) A mutant of Escherichia coli K12 energy-uncoupled for lactose transport. Biochim Biophys Acta 255: 786–797

    Article  PubMed  CAS  Google Scholar 

  • Winkler HH (1973) Energy coupling of the hexose phosphate transport system in Escherichia coli. J Bacteriol 116: 203–209

    PubMed  CAS  Google Scholar 

  • Winkler HH, Wilson TH (1966) The role of energy coupling in the transport of β-galactosides by Escherichia coli. J Biol Chem 241: 2200–2211

    PubMed  CAS  Google Scholar 

  • Wood RE, Wirth FP, Morgan HE (1968) Glucose permeability of lipid bilayer membranes. Biochim Biophys Acta 163: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Wyse R (1979) Sucrose uptake by sugar beet tap root tissue. Plant Physiol 64: 837–841

    Article  PubMed  CAS  Google Scholar 

  • Zala CA, Kahlenberg A (1976) Reconstitution of D-glucose transport in vesicles composed of lipids and a purified protein from the human erythrocyte membrane. Biochem Biophys Res Commun 72: 866–874

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Komor, E. (1982). Transport of Sugar. In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics