Skip to main content

Methoden klinischer Forschung

  • Chapter
Dünndarm A

Part of the book series: Handbuch der inneren Medizin ((INNEREN 3,volume 3 / 3 / A))

  • 60 Accesses

Zusammenfassung

In diesem Kapitel werden Methoden zur Bestimmung der Resorptions- und Sekretionsraten, der intraluminalen Flußgeschwindigkeit und der elektrischen Potentialdifferenz im menschlichen Verdauungstrakt vorgestellt. Wenn auch Grundmechanismen der Darmfunktion bei Mensch und Versuchstier ähnlich sind, so existieren doch Unterschiede zwischen den einzelnen Spezies und nur wenige Darmerkrankungen haben ihr Gegenstück bei Versuchstieren. Es müssen also pathophysiologische Mechanismen beim Menschen definiert werden, obwohl technische Eleganz und die Kontrollmöglichkeit physiologischer Variablen nicht den bei Tieren erzielbaren Grad erreichen. Der Schwerpunkt wird eher auf Methodik und Interpretation von Ergebnissen in Hinblick auf physiologische Prozesse gesetzt werden, als auf die Bewertung verschiedener Darmfunktionstests der klinischen Diagnostik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Archampong EQ, Harris J, Clark CG (1972) The absorption and secretion of water and electrolytes across the healthy and the diseased human colonic mucosa measured in vitro. Gut 13:880–886

    PubMed  CAS  Google Scholar 

  • Atwell JD, Duthie HL (1964) The absorption of water, sodium, potassium from the ileum of humans showing the effects of regional enteritis. Gastroenterology 46:16–22

    PubMed  CAS  Google Scholar 

  • Aubert J-P, Bronner F, Richelle LJ (1963) Quantitation of calcium metabolism. Theory. J Clin Invest 42:885–897

    PubMed  CAS  Google Scholar 

  • Barreiro MA, McKenna RD, Beck IT (1968) Determination of transit time in the human jejunum by the single-injection indicator-dilution technic. Am J Dig Dis 13:220–231

    Google Scholar 

  • Barry PH, Diamond JM (1970) Junction potentials, electrode standard potentials, and other problems of interpreting electrical properties of membranes. J Membr Biol 3:93–122

    CAS  Google Scholar 

  • Berger EY, Steele JM (1958) The calculation of transfer rates in two compartment systems not in dynamic equilibrium. J Gen Physiol 41(6): 1135–1152

    PubMed  CAS  Google Scholar 

  • Bieberdorf FA, Gorden P, Fordtran JS (1972) Pathogenesis of congenital alkalosis with diarrhea. Implications for the physiology of normal ileal electrolytes absorption and secretion. J Clin Invest 51:1958–1968

    PubMed  CAS  Google Scholar 

  • Bjork JT, Soergel KH, Wood CM (1975) Intestinal absorption and metabolism of D-mannitol-U-14C-(M-14C) (abstr). Clin Res 23:391 A

    Google Scholar 

  • Bjork JT, Soergel KH, Wood CM (1976) The composition of „free“stool water (abstr). Gastroenterology 70:864

    Google Scholar 

  • Björn-Rasmussen E, Hallberg L, Isaksoon B, Avidsson B (1974) Food iron absorption in man. Applications of the two-pool extrinsic tag method to measure heme and nonheme iron absorption from the whole diet. J Clin Invest 53:245–255

    Google Scholar 

  • Blankenhorn DH, Hirsch J, Ahrens EJ jr (1955) Transintestinal intubation: technic for measurement of gut length and physiologie sampling at known loci. Proc Soc Exp Biol Med 88:356–362

    PubMed  CAS  Google Scholar 

  • Bond JH jr, Levitt MD (1972) Use of pulmonary hydrogen (H2) measurements to quantitate carbohydrate absorption of partially gastrectomized patients. J Clin Invest 51:1219–1225

    PubMed  CAS  Google Scholar 

  • Bond JH jr, Levitt MD (1975) Investigation of small bowel transit time in man utilizing pulmonary hydrogen (H2) measurements. J Lab Clin Med 85:546–555

    PubMed  CAS  Google Scholar 

  • Bond JH jr, Levitt MD (1976) Quantitative measurement of lactose absorption. Gastroenterology 70:1058–1062

    PubMed  CAS  Google Scholar 

  • Borgström B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36:1521–1536

    PubMed  Google Scholar 

  • Branch WJ, Cummings JH (1978) Comparison of radio-opaque pellets and chromium sesquioxide as inert markers in studies requiring accurate faecal collections. Gut 19:371–376

    PubMed  CAS  Google Scholar 

  • Browning TH, Trier JS (1969) Organ culture of mucosal biopsies of human small intestine. J Clin Invest 48:1423–1432

    PubMed  CAS  Google Scholar 

  • Cantor MO (1962) The effect of intestinal gases upon intestinal decompression tubes. Am J Surg 104:527–530

    Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977 a) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). I. Chemical analysis and biological properties of PEG 400. Gastroenterology 73:241–246

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977 b) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 4000). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  • Clarke RM, Kobayashi S (1975) The cytological effects of infusion of luminal polyethylene glycol on the rat small intestinal mucosa. Arch Histol Jpn 38:133–150

    PubMed  CAS  Google Scholar 

  • Conrad ME jr, Crosby WH (1963) Intestinal mucosal mechanisms controlling iron absorption. Blood 22:406–415

    PubMed  CAS  Google Scholar 

  • Conrad ME, Weintraub LR, Crosby WH (1964) The role of the intestine in iron kinetics. J Clin Invest 43:963–974

    PubMed  CAS  Google Scholar 

  • Cook GC, Carruthers RH (1974) Reaction of human small intestine to an intraluminal tube and its importance in jejunal perfusion studies. Gut 15:545–548

    PubMed  CAS  Google Scholar 

  • Cooksey JC (1969) The partial stream sampling assumption in intestinal perfusion studies. Bull Math Biophys 31:307–317

    PubMed  CAS  Google Scholar 

  • Cooper HL, Levitan R (1965) Prolonged retention of intestinal tubes. Gastroenterology 48(5):634–635

    PubMed  CAS  Google Scholar 

  • Cooper H, Levitan R, Fordtran JS, Ingelfinger FJ (1966) A method for studying absorption of water and solute from the human small intestine. Gastroenterology 50:1–7

    PubMed  CAS  Google Scholar 

  • Cooperstein IL, Hogben CAM (1959) Ionic transfer across the isolated frog large intestine. J Gen Physiol 42:461–473

    PubMed  CAS  Google Scholar 

  • Cortot A, Phillips SF, Malagelada J-R (1978) Sucrose polyester (14C-SPE) as oil phase marker in man (abstr). Gastroenterology 74:1021

    Google Scholar 

  • Costrini NV, Ganeshappa KP, Wu W, Whalen GE, Soergel KH (1977) Effect of insulin, glucose, and controlled diabetes mellitus on human jejunal function. Am J Physiol 233(3): E181–E187

    PubMed  CAS  Google Scholar 

  • Cotton PB (1972) Non-dietary lipid in the intestinal lumen. Gut 13:675–681

    PubMed  CAS  Google Scholar 

  • Cummins AJ, Almy TP (1953) Studies on the relationship between motility and absorption in the human small intestine. Gastroenterology 23:179–190

    PubMed  CAS  Google Scholar 

  • Curran PF, Solomon AK (1957) Ion and water fluxes in the ileum of the rat. J Gen Physiol 41:143–168

    PubMed  CAS  Google Scholar 

  • Dauchel J, Kachelhoffer J, Mendel C, Eloy MR, Grenier JF (1975) Comparative study of fat absorption using triolein labeled with 151I or 14C. Acta Castroenterol Belg 38:299–313

    CAS  Google Scholar 

  • Davignon J, Simmonds WJ, Ahrens EH Jr (1968) Usefulness of chromic oxide as an internal standard for balance studies in formula fed patients and for assessment of colonic function. J Clin Invest 47:127–138

    PubMed  CAS  Google Scholar 

  • Davis GR, Morawski SG, Fordtran JS (1980) Inhibiton of water and electrolyte absorption by polyethylene glycol (PEG). Gastroenterology 79:35–39

    PubMed  CAS  Google Scholar 

  • Debongnie JC, Newcomer AD, McGill DB, Phillips SF (1979) Absorption of nutrients in lactase deficiency. Dig Dis Sci 24:225–231

    PubMed  CAS  Google Scholar 

  • Desai HG, Antia FP (1973) Fecal fat excretion for exceeding total fat intake. Indian J Med Sci 27:471–475

    PubMed  CAS  Google Scholar 

  • Devroede GJ, Phillips SF (1969) Studies of the perfusion technique for colonic absorption. Gastroenterology 50:92–100

    Google Scholar 

  • Dietschy JM, Sallee VL, Wilson FA (1971) Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology 61:932–934

    PubMed  CAS  Google Scholar 

  • Dillard RL, Eastman H, Fordtran JS (1965) Volume-flow relationships during transport of fluid through the human small intestine. Gastroenterology 49:58–66

    Google Scholar 

  • Donaldson RM jr, Barreras RF (1966) Intestinal absorption of trace quantities of chromium. J Lab Clin Med 68(3): 484–493

    PubMed  CAS  Google Scholar 

  • Duthie HL, Watts JM, Dombal FT de, Goligher JC (1964) Serum electrolytes and colonic transfer of water and electrolytes in chronic ulcerative colitis. Gastroenterology 47:525–530

    PubMed  CAS  Google Scholar 

  • Editorial (1973) Potential difference of gut epithelia. Lancet 2:424–425

    Google Scholar 

  • Edmonds CJ (1971) Absorption of sodium and water by human rectum measured by a dialysis method. Gut 12:356–362

    PubMed  CAS  Google Scholar 

  • Elsas LJ, Hillman RE, Patterson JH, Rosenberg LE (1970) Renal and intestinal hexose transport in familial glucose-galactose malabsorption. J Clin Invest 49:576–585

    PubMed  CAS  Google Scholar 

  • Emonts P, Vidon N, Bernier JJ, Rambaud JC (1979) Etude sur 24 heures des flux liquidiens intestinaux chez l’homme normal par la technique de la perfusion lente d’un marqueur non absorbable. Gastroenterol Clin Biol 3:139–146

    PubMed  CAS  Google Scholar 

  • Findlay JM, Mitchell WD, Eastwood MA, Anderson AJB, Smith AN (1974) Intestinal streaming patterns in cholerrhoeic enteropathy and diverticular disease. Gut 15:207–212

    PubMed  CAS  Google Scholar 

  • Fogel MR, Gray GM (1973) Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. J Appl Physiol 35:263–267

    PubMed  CAS  Google Scholar 

  • Fordtran JS (1966) Marker perfusion techniques for measuring intestinal absorption in man. Gastroenterology 51:1089–1093

    PubMed  CAS  Google Scholar 

  • Fordtran JS (1969) Segmental perfusion techniques. Gastroenterology 56:987–989

    PubMed  CAS  Google Scholar 

  • Fordtran JS (1975) Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest 55:728–737

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Levitan R, Bikerman V, Burrows BA, Ingelfinger FJ (1961) The kinetics of water absorption in the human intestine. Trans Assoc Am Physicians 74:195–206

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Soergel KH, Ingelfinger FJ (1962 a) Intestinal absorption of D-xylose in man. N Engl J Med 267:274–279

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Clodi PH, Soergel KH, Ingelfinger FJ (1962 b) Sugar absorption tests, with special reference to 3-0-Methyl-d-Glucose and d-Xylose. Ann Int Med 57(6): 883–891

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector RC jr, Ewton MF, Soter N, Kinney J (1965) Permeability characteristics of the human small intestine. J Clin Invest 44(12): 1935–1944

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC, Locklear TW, Ewton MF (1967) Water and solute movement in the small intestine of patients with sprue. J Clin Invest 46:287–298

    PubMed  CAS  Google Scholar 

  • Goulston K, Olsen W, Harris L (1966) Evaluation of assumptions necessary in marker-perfusion studies. Clin Res 14:297

    Google Scholar 

  • Gray GM, Santiage NA (1966) Disaccharide absorption in normal and diseased human intestine. Gastroenterology 51:489–498

    PubMed  CAS  Google Scholar 

  • Groisser VW, Farrar JT (1960) Absorption of radioactive sodium from the intestinal tract of man. I. Effect of intestinal motility. II. Effect of an organomercurial. J Clin Invest 39:1607–1618

    PubMed  CAS  Google Scholar 

  • Gustke RF, Varma RR, Soergel KH (1970) Gastric reflux during perfusion of the proximal small bowel. Gastroenterology 59:890–895

    PubMed  CAS  Google Scholar 

  • Gustke RF, McCormick PG, Ruppin H, Soergel KH, Wood CM (1981) Human intestinal potential difference: recording method and biophysical implications. J Physiol 321:571–582

    PubMed  CAS  Google Scholar 

  • Hall BD, MacMillan DR, Bronner F (1969) Vitamin D-resistant rickets and high fecal endogenous calcium output. Am J Clin Nutr 22:448–457

    PubMed  CAS  Google Scholar 

  • Hallberg L, Sölvell L (1960) Determination of the absorption of iron in man. Acta Med Scand 168[Suppl]:358

    Google Scholar 

  • Heaney RP (1974) Whole-body counting: analysis of retention data for isotopes having prominent fecal excretion. J Lab Clin Med 84:1–5

    PubMed  CAS  Google Scholar 

  • Heaney RP, Skillman TG (1964) Secretion and excretion of calcium by the human gastrointestinal tract. J Lab Clin Med 64:29–41

    PubMed  CAS  Google Scholar 

  • Helman CA, Barbezat GO (1978) Comparison of 14C-labelled polyethylene glycol (PEG) with carrier PEG and 14C-PEG alone as a volume indicator in the human jejunum. Gut 19:155–156

    PubMed  CAS  Google Scholar 

  • Hendry EB (1960) The chemical diagnosis of steatorrhoea. Br Med J 2:975–979

    PubMed  CAS  Google Scholar 

  • Hesp R, Williams D, Rinsler M, Reeve J (1979) A comparison of chromium sesquioxide and 51Cr chromic chloride as inert markers in calcium balance studies. Clin Sci 57:89–92

    PubMed  CAS  Google Scholar 

  • Hirsch J, Ahrens EH Jr, Blankenhorn DH (1956) Measurement of the human intestinal length in vivo and some causes of variation. Gastroenterology 31:274–284

    PubMed  Google Scholar 

  • Hoving J, Valkema AJ, Wilson JHP, Woldring MG (1975) Properties of glycerol-75Se-triether: a lipid-soluble marker for the estimation of intestinal fat absorption. J Lab Clin Med 86:286–294

    PubMed  CAS  Google Scholar 

  • Hyden S (1955) A turbidometric method for the determination of higher polyethylene glycols in biological materials. Ann Agric Coll (Sweden) 22:139–145

    Google Scholar 

  • Jacobson ED, Brody DC, Broitman SA, Fordtran JS (1963) Validity of polyethylene glycol in estimating intestinal water volume. Gastroenterology 44:761–767

    PubMed  CAS  Google Scholar 

  • Johansson C, Ekelund K, Lagerlöf HO (1976) Multiple indicator dilution method. Mt Sinai J Med 43:21–34

    Google Scholar 

  • Kasper H (1970) Faecal fat excretion, diarrhea, and subjective complaints with highly dosed oral fat intake. Digestion 3:321–330

    PubMed  CAS  Google Scholar 

  • Kasper H, Hospach R (1974) Der diagnostische Wert des Vitamin-A-Toleranztests bei Maldigestion und Malabsorption. Dtsch Med Wochenschr 99:354–357

    PubMed  CAS  Google Scholar 

  • Krag E, Krag B, Lenz K (1975) A comparison of stable and 3H-labelled polyethylene glycol as non-absorbable water phase markers in the human ileum and feces. Scand J Gastroenterol 10:105–108

    PubMed  CAS  Google Scholar 

  • Lagerlöf HO, Ekelund K, Johansson C (1972) Studies of gastrointestinal interactions. I. A mathematical analysis of jejunal indicator concentrations used to calculate jejunal flow and mean transit time. Scand J Gastroenterol 7:379–389

    PubMed  Google Scholar 

  • Lasser RB, Bond JH, Levitt MD (1975) The role of intestinal gas in functional abdominal pain. N Engl J Med 293:524–526

    PubMed  CAS  Google Scholar 

  • Levine AS, Silvis SE (1980) Absorption of whole peanuts, peanut oil, and peanut butter. N Engl J Med 303:917–918

    PubMed  CAS  Google Scholar 

  • Levitt MD, Bond J (1977) Use of the constant perfusion technique in the nonsteady state (editorial). Gastroenterology 73:1450–1454

    PubMed  CAS  Google Scholar 

  • Levitt MD, Berggren T, Hastings J, Bond JH (1974) Hydrogen (H2) catabolism in the colon of the rat J Lab Clin Med 84:163–167

    CAS  Google Scholar 

  • Lewis LD, Fordtran JS (1975) Effect of perfusion rate on absorption, surface area, unstirred water layer thickness, permeability and intraluminal pressure in the rat ileum in vivo. Gastroenterology 68:1509–1516

    PubMed  CAS  Google Scholar 

  • MacGregor IL, Meyer JH (1974) Methods and techniques: nonabsorbable indicators. The effect of protein on phenol red and polyethylene glycol determination. Dig Dis 19:361–365

    CAS  Google Scholar 

  • Malagelada J-R, Longstreth GF, Summerskill WHJ, Go VLW (1976) Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology 70:203–210

    PubMed  CAS  Google Scholar 

  • Malawer SJ, Powell DW (1967) An improved turbidimetric analysis of polyethylene glycol utilizing an emulsifier. Gastroenterology 53:250–256

    CAS  Google Scholar 

  • Manners MJ, Kidder DE (1968) Polythylene glycol as marker in piglet diets with a high dry-matter content. Br J Nutr 22:515–526

    Google Scholar 

  • McLeod GM, French AB, Good CJ, Wright FS (1968) Gastrointestinal absorption and biliary excretion of phenolsulphonphthalein (phenol red) in man. J Lab Clin Med 71:192–200

    PubMed  CAS  Google Scholar 

  • McNeil NI, Cummings JH, James WPT (1978) Short chain fatty acid absorption by the human large intestine. Gut 19:819–822

    PubMed  CAS  Google Scholar 

  • Miller DL, Schedl HP (1972) Nonabsorbed indicators: a comparison of phenol red and inulin-14C and effects of perfusion. Gastroenterology 62:48–55

    PubMed  CAS  Google Scholar 

  • Modigliani R, Rambaud JC, Bernier JJ (1973) The method of intraluminal perfusion of the human small intestine. I. Principle and technique. Digestion 9:176–192

    PubMed  CAS  Google Scholar 

  • Modigliani R, Rambaud JC, Bernier JJ (1978) Validation of the use of a tube with a proximal occlusive balloon for measurement of intestinal absorption in man. Dig Dis 23:720–722

    CAS  Google Scholar 

  • Morgan RGH, Hofmann AF (1970a) Synthesis and metabolisms of glycerol-3H-triether, a nonabsorbable oil-phase marker for lipid absorption studies. J Lipid Res 11:223–230

    PubMed  CAS  Google Scholar 

  • Morgan RGH, Hofmann AF (1970 b) Use of 3H-labeled triether, a nonabsorbable oil-phase marker, to estimate fat absorption in rats with cholestyramineinduced steatorrhea. J Lipid Res 11:231–236

    PubMed  CAS  Google Scholar 

  • Nasrallah SM, Al-Khalidi UAS (1980) Clinical value of 14C-phenylacetic oil as a fat absorption test. Lancet 2:229–231

    Google Scholar 

  • Neame KD, Richards TG (1972) Elementary kinetics of membrane carrier transport, 1st edn. Blackwell Scientific Publications, Oxford, pp 41–50

    Google Scholar 

  • Nelson LM, Mackenzie JF, Russell RI (1980) Measurement of fat absorption using (3H) glycerol triether and (14C) glycerol trioleate in man. Clin Chim Acta 103:325–334

    PubMed  CAS  Google Scholar 

  • Newcomer AD, McGill DB, Thomas PJ, Hofmann AF (1975) Prospective comparison of indirect methods for detecting lactase deficiency. N Engl J Med 293:1232–1235

    PubMed  CAS  Google Scholar 

  • Newcomer AD, Hofmann AF, DiMagno EP, Thomas PJ, Carlson GL (1979) Triolein breath test. A sensitive and specific test for fat malabsorption. Gastroenterology 76:6–13

    PubMed  CAS  Google Scholar 

  • Newton DF, Mansbach CM (1978) β-sitosterol as a nonabsorbable marker of dietary lipid absorption in man. Clin Chim Acta 89:331–339

    PubMed  CAS  Google Scholar 

  • Parsons DS (1968) Methods for investigation of intestinal absorption. In: Code CF (ed) Handbook of physiology, section 6: Alimentary canal, vol III. Intestinal absorption. American Physiological Society, Washington DC, p 1184

    Google Scholar 

  • Parsons DS (1976) Closing summary. In: Robinson JWL (ed) Intestinal ion transport. Medical and Technical Publishing Company Lancaster, UK, pp 407–430

    Google Scholar 

  • Phillips SF, Summerskill WHJ (1966) Occlusion of the jejunum for intestinal perfusion in man. Mayo Clin Proc 41:224–231

    PubMed  CAS  Google Scholar 

  • Pimparkar BD, Tulsky EG, Kaiser MH, Bockus HL (1960) Correlation of radioactive and chemical faecal fat in different malabsorption syndromes. Br Med J 24:894–900

    Google Scholar 

  • Read NW (1979) The migrating motor complex and spontaneous fluctuations of transmural potential potential difference in the human small intestine. 7th International Symposium on Gastrointestinal Motility. Iowa University Press

    Google Scholar 

  • Read NW, Fordtran JS (1979) The role of intraluminal junction potentials in the generation of the gastric potential difference in man. Gastroenterology 76:932–938

    PubMed  CAS  Google Scholar 

  • Read NW, Barber DC, Levin RJ, Holdsworth CD (1977) Unstirred layer and kinetics of electrogenic glucose absorption in the human jejunum in situ. Gut 18:865–876

    PubMed  CAS  Google Scholar 

  • Rozanski J, Kleinfeld M (1975) A complication of prolonged intestinal intubation: gaseous distention of the terminal balloon. Dig Dis 20:1067–1070

    CAS  Google Scholar 

  • Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG jr (1980) Absorption of short-chain fatty acis by the colon. Gastroenterology 78:1500–1507

    PubMed  CAS  Google Scholar 

  • Saunders DR, O’Brien TK (1972) Disappointment with triethers as markers for measuring triglyceride absorption in man. Gut 13:867–870

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1961a) Kinetics of intestinal absorption in man: normal subjects and patients with sprue (abstr) J Clin Invest 40:1079–1080

    Google Scholar 

  • Schedl HP, Clifton JA (1961 b) Small intestinal absorption of steroids. Gastroenterology 41:491–499

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1962) Polyvinylpyrrolidone-I131 as an indicator of net intestinal water flux: its binding by intestinal mucus. Proc Soc Exp Biol Med 110:381–384

    PubMed  CAS  Google Scholar 

  • Schiffer LM, Price DC, Cuttner J, Cohn SH, Cronkite EP (1964) A note concerning the „100 per cent value“in iron absorption studies by whole body counting. Blood 23:757–761

    PubMed  CAS  Google Scholar 

  • Schmid WC, Phillips SF, Summerskill WHJ (1968) Jejunal trauma following perfusion of the small intestine in nontropical sprue. Gastroenterology 54:417–420

    PubMed  CAS  Google Scholar 

  • Schmitt MG jr, Wood CM, Soergel KH (1974) A method for rapid placing of small intestinal perfusion tubes. Gut 15:227–228

    PubMed  Google Scholar 

  • Schmitt MG jr, Soergel KH, Wood CM, Steff JJ (1977) Absorption of shortchain fatty acids from the human ileum. Am J Dig Dis 22:340–347

    PubMed  CAS  Google Scholar 

  • Scholer JF, Code CF (1954) Rate of absorption of water from stomach and small bowel of human beings. Gastroenterology 27:565–577

    PubMed  CAS  Google Scholar 

  • Shaffer CB, Critchfield FH, Naiv JH III (1950) Chemical and physical examination of some polyethylene glycols. J Am Pharm Assoc 39:344–348

    CAS  Google Scholar 

  • Shields R, Harris J, Da Vies MW (1968) Suitability of polyethylene glycol as a dilution indicator in the human colon. Gastroenterology 54:331–333

    PubMed  CAS  Google Scholar 

  • Sie HG, Valkema AJ, Loomeijer FJ (1967) A lipid-soluble inert indicator in fat absorption studies in the rat. J Lab Clin Med 69:989–996

    PubMed  CAS  Google Scholar 

  • Siebert JR (1980) Small-intestine length in infants and children. Am J Dis Child 134:593–595

    PubMed  CAS  Google Scholar 

  • Sladen GE (1970) A study of the intestinal absorption of fluid and electrolytes in man. Medical Thesis, University of Oxford, England

    Google Scholar 

  • Sladen GE, Dawson AM (1968) An evaluation of perfusion techniques in the study of water and electrolyte absorption in man; the problem of endogenous secretions. Gut 9:530–535

    PubMed  CAS  Google Scholar 

  • Sladen GE, Dawson AM (1969) Effects of flow rate on the absorption of glucose in a steady state perfusion system in man. Clin Si 36:133–145

    CAS  Google Scholar 

  • Sladen GE, Kumar PJ (1973) Is the xylose test still a worthwhile investigation? Br Med J 223–225

    Google Scholar 

  • Soergel KH (1968) Inert markers. Gastroenterology 54:449–452

    PubMed  CAS  Google Scholar 

  • Soergel KH (1971) Flow measurements of test meals and fasting contents in the human small intestine. In: Demling L, Ottenjann R (eds) Gastrointestinal motility. Thieme, Stuttgart, p 81

    Google Scholar 

  • Soergel KH, Fordtran JS (1962) The study of intestinal absorption in man. Am J Clin Nutr 11:324–328

    Google Scholar 

  • Soergel KH, Hogan WJ (1967) On the suitability of poorly absorbed markers as dilution indicators in the gastrointestinal tract. Gastroenterology 52:1056–1057

    PubMed  CAS  Google Scholar 

  • Soergel KH, Whalen GE, Harris JA (1968a) Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol 24:40–48

    PubMed  CAS  Google Scholar 

  • Soergel KH, Whalen GE, Harris JA, Geenen JE (1968 b) Effect of antidiuretic hormone on human small intestinal water and solute transport. J Clin Invest 47:1071–1082

    PubMed  CAS  Google Scholar 

  • Soergel KH, Mueller KH, Gustke RF, Geenen JE (1974) Jejunal calcium transport in health and metabolic bone disease: effect of vitamin D. Gastroenterology 67:28–34

    PubMed  CAS  Google Scholar 

  • Stanley MM, Cheng SH (1957) Excretion from the gut and gastrointestinal exchange. Am J Dig Dis 2:628–642

    PubMed  CAS  Google Scholar 

  • Stayton MM, Fromm HJ (1979) A computer analysis of the validity of the integrated Michaelis-Menten equation. J Theor Biol 78:309–323

    PubMed  CAS  Google Scholar 

  • Thompson WS jr, Lewis JJ, Alving A (1952) Physiologic changes during perfusion of the isolated intestinal loop in chronic uremia. J Lab Clin Med 39:69–83

    PubMed  CAS  Google Scholar 

  • Thomson ABR, Dietschy JM (1980) Intestinal kinetic parameters: effects of unstirred layers and transport preparation. Am J Physiol 239:G372-G377

    PubMed  CAS  Google Scholar 

  • Turnberg LA (1971) Potassium transport in the human small bowel. Gut 12:811–818

    PubMed  CAS  Google Scholar 

  • Vavrinkova A, Krondl A (1965) The use of polyethylene glycol in studies of fat assimilation. Cesk Gatroenterol Vyz 19:424–426

    CAS  Google Scholar 

  • Wang JH, Robinson CV, Edelman IS (1953) Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3, and O18 tracers. J Am Chem Soc 75:466–470

    Google Scholar 

  • Whalen GE, Harris JA, Geenen JE, Soergel KH (1966) Sodium and water absorption from the human small intestine. The accuracy of the perfusion method. Gastroenterology 51:975–984

    PubMed  CAS  Google Scholar 

  • Wiggins HS, Dawson AM (1961) An evaluation of unabsorbable markers in the study of fat absorption. Gut 2:373

    PubMed  CAS  Google Scholar 

  • Wilkinson R (1971) Polyethylene glycol 4000 as a continuously administered non-absorbable faecal marker for metabolic balance studies in human subjects. Gut 12:654–660

    PubMed  CAS  Google Scholar 

  • Wingate DL (1975) Electro-potential differences in the gastrointestinal tract. Present status. Acta Hepato-Gastroenterol 22:200–205

    CAS  Google Scholar 

  • Wingate DL, Sandberg RJ, Phillips SF (1972) A comparison of stable and 14C-labeled polyethylene glycol as volume indicators in the human jejunum. Gut 13:812–815

    PubMed  CAS  Google Scholar 

  • Winne D (1979) Rat jejunum perfused in situ: effect of perfusion rates and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn-Schmiedebergs Arch Pharmacol 307:265–274

    PubMed  CAS  Google Scholar 

  • Winne D, Markgraf I (1979) The longitudinal intraluminal concentration gradient in the perfused rat jejunum and the appropriate mean concentration for calculation of the absorption rate. Naunyn Schmiedebergs Arch Pharmacol 309:271–279

    PubMed  CAS  Google Scholar 

  • Worning H, Amdrup E (1965) Experimental studies on the value of the reference substances polyethyleneglycol, bromsulphthalein, and 51Cr as indicators of the fluid content in the intestinal lumen. Gut 6:487–493

    PubMed  CAS  Google Scholar 

  • Yamatani Y, Ishikawa S (1968) Polyvinyl alcohol as a water-soluble marker. Part I. Absorption and excretion of polyvinyl alcohol from the gastrointestinal tract of adult rat. Agric Biol Chem 32:474–478

    CAS  Google Scholar 

  • Zierler KL (1958) A simplified explanation of the theory of indicatordilution for measurement of fluid flow and volume and other distributive phenomena. Bull Hopkins Hosp 103:199–217

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soergel, K.H. (1983). Methoden klinischer Forschung. In: Bazzoli, F., et al. Dünndarm A. Handbuch der inneren Medizin, vol 3 / 3 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68415-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68415-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68416-6

  • Online ISBN: 978-3-642-68415-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics