Skip to main content

In Vitro and In Vivo Laboratory Evaluation of β-Lactam Antibiotics

  • Chapter
Antibiotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 67 / 2))

  • 367 Accesses

Abstract

The use of molds to treat cuts and injuries (Florey 1949) can be traced back in records of folk medicine to ancient Egypt where “crumbs of a moldy wheaten loaf” were used to treat scalp infections (Böttcher 1964). The agent being used was indoubtedly a penicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham EP (1962) The cephalosporins. Pharmacol Rev 14:473–500

    PubMed  CAS  Google Scholar 

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146:837

    CAS  Google Scholar 

  • Abraham EP, Loder PB (1972) Cephalosporin C. In: Flynn EH (ed) Cephalosporins and penicillins: chemistry and biology. Academic Press, New York London, pp 3–11

    Google Scholar 

  • Abraham EP, Newton GGF (1956) A comparison of the action of penicillinase on benzylpenicillin and cephalosporin N and the competitive inhibition of penicillinase by cephalosporin C. Biochem J 63:628–634

    CAS  Google Scholar 

  • Abraham EP, Chain E, Fletcher CM, Gardner AD, Heatley NG, Jennings MA, Florey HW (1941) Further observations on penicillin. Lancet 11:177–189

    Google Scholar 

  • Acar JF (1980) The disc susceptibility test. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 24–54

    Google Scholar 

  • Acred P, Hunter PA, Mizen L, Rolinson GN (1970) A-Carboxy-3-thienylmethylpenicillin (BL 2288), a new semisynthetic penicillin: in vivo evaluation. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda, MD, p 396

    Google Scholar 

  • Adams HG, Stillwell GA, Turck M (1976) In vitro evaluation of cefoxitin and cefamandole. Antimicrob Agents Chemother 9:1019–1024

    PubMed  CAS  Google Scholar 

  • Anderson JD, Eftekhar F, Aird MY, Hammond J (1979) Role of bacterial growth rates in the epidemiology and pathogenesis of urinary infections in women. J Clin Microbiol 10:766–771

    PubMed  CAS  Google Scholar 

  • Anderson JD, Johnson KR, Aird MY (1980) Comparison of amoxicillin and ampicillin activities in a continuous culture model of the human urinary bladder. Antimicrob Agents Chemother 17:554–557

    PubMed  CAS  Google Scholar 

  • Anderson RC, Lee CC, Worth HM, Chen KK (1955) Pharmacologic and toxicologic studies with penicillin V. In: Welch H, Marti-Ibanez F (eds) Antibiotic annual. Medical Encyclopedia, New York, pp 540–548

    Google Scholar 

  • Barry AL, Sabath LD (1974) Special tests: Bactericidal activity and activity of antimicrobics in combination. In: Lennette EH, Spaulding EH, Truant JP (eds) Manual of clinical microbiology, 2nd edn. American Society for Microbiology, Washington DC, pp 431–435

    Google Scholar 

  • Barry AL, Schoenknecht FD, Shadomy S, Sherris JC, Thornsberry C, Washington JA, Kammer RB (1979) Interpretive criteria for cefamandole and cephalothin disk diffusion susceptibility tests. Antimicrob Agents Chemother 15:140–141

    PubMed  CAS  Google Scholar 

  • Barza M, Weinstein L (1974) Penetration of antibiotics into fibrin loci in vivo. I. Comparison of penetration of ampicillin into fibrin clots, abscesses and “interstitial fluid.” J Infect Dis 129:59–65

    PubMed  CAS  Google Scholar 

  • Barza M, Samuelson T, Weinstein L (1974a) Penetration of antibiotics into fibrin loci in vivo. II. Comparison of nine antibiotics: Effect of dose and degree of protein binding. J Infect Dis 129:66–72

    CAS  Google Scholar 

  • Barza M, Brusch J, Bergeron MG, Weinstein L (1974b) Penetration of antibiotics into fibrin loci in vivo. III. Intermittent vs continuous infusion and the effect of probenecid. J Infect Dis 129:73–78

    CAS  Google Scholar 

  • Batchelor FR, Doyle FP, Nayler JHC, Rolinson GN (1959) Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183:257–258

    PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility by a standardized single disc method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

  • Beam Jr TR, Allen JC (1980) Comparison of cefamandole, cephalothin, ampicillin, and chloramphenicol in experimental Escherichia coli meningitis. Antimicrob Agents Chemother 17:37–42

    PubMed  CAS  Google Scholar 

  • Beaty HN, Walters E (1979) Pharmacokinetics of cefamandole and ampicillin in experimental meningitis. Antimicrob Agents Chemother 16:584–588

    PubMed  CAS  Google Scholar 

  • Behrens OK, Corse J, Edwards JP, Garrison L, Jones RG, Soper QF, van Abeele FR, Whitehead CW (1948) Biosynthesis of penicillins. IV. New crystalline biosynthetic penicillins. J Biol Chem 175:793–809

    PubMed  CAS  Google Scholar 

  • Birnbaum J, Stapley EO, Miller AK, Wallick H, Hendlin D, Woodruff HB (1978) Cefoxitin, a semi-synthetic cephamycin: a microbiological overview. J Antimicrob Chemother [Suppl B] 4:15–32

    CAS  Google Scholar 

  • Birnbaum J, Stapley EO, Miller AK, Celozzi E, Wallick H, Pelak BA, Zimmerman SB, Hendlin D, Woodruff HB (1979) Development of the semi-synthetic cephamycin, cefoxitin as a clinical candidate. Infection [Suppl 1] 7:S13–S20

    Google Scholar 

  • Bodey GP, Pan T (1977) Mezlocillin: in vitro studies of a new broad spectrum penicillin. Antimicrob Agents Chemother 11:74–79

    PubMed  CAS  Google Scholar 

  • Bodey GP, Weaver S (1976) In vitro studies of cefamandole. Antimicrob Agents Chemother 9:452–457

    PubMed  CAS  Google Scholar 

  • Bond JM, Lightbrown JW, Barber M, Waterworth PM (1963) A comparison of four phenoxypenicillins Br Med J 2:956–961

    PubMed  CAS  Google Scholar 

  • Bondi A, Spaulding EH, Smith DE, Dietz CC (1947) A routine method for the rapid determination of susceptibility to penicillin and other antibiotics. Am J Med Sci 213:221–225

    PubMed  Google Scholar 

  • Böttcher HM (1964) Wonder drugs. A history of antibiotics. JB Lippincott, Philadelphia New York, p 36; pp 130–131

    Google Scholar 

  • Brandl E, Giovannini M, Margreiter H (1953) Untersuchungen über das saurestabile, oral wirksame phenoxymethyl penicillin (penicillin V). Wien Med Wochenschr 103:602–607

    PubMed  CAS  Google Scholar 

  • Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD, Reading C, Rolinson GN (1976) Naturally occurring ß-lactamase inhibitors with antibacterial activity. J Antibiot 29:668–669

    PubMed  CAS  Google Scholar 

  • Brown AG, Corbett DF, Eglington AJ, Howarth TT (1977) Structures of olivanic acid derivatives MM 4550 and MM 13 902; two new, fused ß-lactams isolated from Streptomyces olivaceus. J Chem Soc Chem Comm 1977:523–525

    Google Scholar 

  • Brown AG, Corbett DF, Eglington AJ, Howarth TT (1979) Structures of olivanic acid derivatives MM 22 380, MM 22 381, MM 22 382, and MM 22 383; four new antibiotics isolated from Streptomyces olivaceus. J Antibiot 32:961–963

    PubMed  CAS  Google Scholar 

  • Brown D, Blowers R (1978) Disc methods of sensitivity testing and other semiquantitative methods. In: Reeve DS, Phillips I, Williams JD, Wise R (eds) Laboratory methods in antimicrobial chemotherapy. Churchill Livingstone, Edinburgh London New York, pp 8–30

    Google Scholar 

  • Brumfitt W, Kosmidis J, Hamilton-Miller JMT, Gilchrist JNG (1974) Cefoxitin and Cephalothin: Antimicrobial activity, human pharmacokinetics and toxicology. Antimicrob Agents Chemother 6:290–299

    PubMed  CAS  Google Scholar 

  • Buck RE, Price KE (1977) Cefadroxil, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 11:324–330

    PubMed  CAS  Google Scholar 

  • Bryson V, Syzbalski W (1952) Microbial selection. Science 116:45–51

    PubMed  CAS  Google Scholar 

  • Cabana BE, VanHarken DR, Hottendorf GH (1976) Comparative pharmacokinetics and metabolism of cephapirin in laboratory animals and humans. Antimicrob Agents Chemother 10:307–317

    PubMed  CAS  Google Scholar 

  • Calvert RJ, Smith E (1955) Penicillin anaphylactoid shock. Br Med J 2:302–305

    PubMed  CAS  Google Scholar 

  • Carrizosa J, Kaye D (1976) Antibiotic synergism in enterococcal endocarditis. J Lab Clin Med 88:132–141

    PubMed  CAS  Google Scholar 

  • Cassidy PJ, Stapley EO, Goegelman R, Miller TW, Arison B, Albers-Schonberg G, Zimmerman SB, Birnbaum J (1977) Isolation and identification of epithienamycins. 17th intersc conf antimicrob agents chemother, Abstract 81. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Celozzi E, Lotti VJ, Stapley EO, Miller AK (1980) An animal model for assessing pain-oninjection of antibiotics. J Pharmacol Methods 4:285–289

    PubMed  CAS  Google Scholar 

  • Chain E, Florey HW, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet 11:226–228

    Google Scholar 

  • Chauvette RR, Flynn EH, Jackson BG, Lavagnino ER, Morin RB, Mueller RA, Pioch RP, Roeske RW, Ryan CW, Spencer JL, van Heyningen E (1962a) Chemistry of cephalosporin antibiotics. II. Preparation of a new class of antibiotics and the relation of structure to activity. J Am Chem Soc 84:3401–3402

    CAS  Google Scholar 

  • Chauvette RR, Flynn EH, Jackson BG, Lavagnino ER, Morin RB, Mueller RA, Pioch RP, Roeske RW, Ryan CW, Spencer JL, van Heyningen E (1962b) Structure-activity relationships among 7-acylamidocephalosporanic acids. In: Sylvester JC (ed) Antimicrobial agents chemother. American Society for Microbiology, Ann Arbor, MI, pp 687–694

    Google Scholar 

  • Cleeland R, Grunberg E (1980) Laboratory evaluation of new antibiotics in vitro and in experimental animal infections. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 506–548

    Google Scholar 

  • Clutterbuck PW, Lovell R, Raistrick H (1932) CCXXVII Studies in the biochemistry of microorganisms. XXVI. The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkaline-soluble protein and penicillin — the antibacterial substance of Fleming. Biochem J 26:1907–1918

    PubMed  CAS  Google Scholar 

  • Comber KR, Osborne CD, Sutherland R (1975) Comparative effects of amoxycillin and ampicillin in the treatment of experimental mouse infections. Antimicrob Agents Chemother 7:179–185

    PubMed  CAS  Google Scholar 

  • Comber KR, Boon RJ, Sutherland R (1977a) Comparative effects of amoxycillin and ampicillin on the morphology of Escherichia coli in vivo and correlation with activity. Antimicrob Agents Chemother 12:736–744

    CAS  Google Scholar 

  • Comber KR, Basker MJ, Osborne CD, Sutherland R (1977b) Synergy between ticarcillin and tobramycin against Pseudomonas aeruginosa and Enterobacteriaceae in vitro and in vivo. Antimicrob Agents Chemother 11:956–964

    CAS  Google Scholar 

  • Commichau R, Freiesleben H, Sack K, Krüger CH, Henkel W (1976) Chronic E. coli nephritis in rats. Model for assessment of activity of antimicrobial agents. In: Williams JD, Geddes AM (eds) Chemotherapy, vol 2. Plenum, New York London, pp 311–316

    Google Scholar 

  • Daoust DR, Onishi HR, Wallick H, Hendlin D, Stapley EO (1973) Cephamycins, a new family of ß-lactam antibiotics: antibacterial activity and resistance to ß-lactam degradation. Antimicrob Agents Chemother 3:254–261

    PubMed  CAS  Google Scholar 

  • Darland G, Birnbaum J (1977) Cefoxitin resistance to ß-lactamase: a major factor for susceptibility of Bacteroides fragilis to the antibiotic. Antimicrob Agents Chemother 11:725–734

    PubMed  CAS  Google Scholar 

  • Davis SD, Chandler JW (1975) Experimental keratitis due to Pseudomonas aeruginosa: model for evaluation of antimicrobial drugs. Antimicrob Agents Chemother 8:350–355

    PubMed  CAS  Google Scholar 

  • Diding N-A, Frisk AR (1955) Some properties of phenoxymethyl penicillin (penicillin V). In: Hobby (ed) Antibiotics annual. American Society for Microbiology, Bethesda, MD, pp 529–533

    Google Scholar 

  • Dornbusch K, Olsson-Liljequist, Nord CE (1980) Antibacterial activity of new ß-lactam antibiotics on cefoxitin-resistant strains of Bacteroides fragilis. J Antimicrob Chemother 6:207–216

    PubMed  CAS  Google Scholar 

  • Dumon L, Adriaens P, Arné J, Eyssen H (1979) Effect of clavulanic acid on the minimum inhibitory concentration of benzylpenicillin, ampicillin, carbenicillin, or cephalothin against clinical isolates resistant to beta-lactam antibiotics. Antimicrob Agents Chemother 15:315–317

    PubMed  CAS  Google Scholar 

  • Dye WE (1956) An agar diffusion method for studying the bacteriostatic action of combinations of antimicrobial agents. In: Welch H, Marti-Ibâliez F (eds) Antibiotics annual 1955–1956. Medical Encyclopedia, New York, pp 374–382

    Google Scholar 

  • English AE, Retsema JA, Girard AE, Lynch JE, Barth WE (1978) CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother 14:414–419

    PubMed  CAS  Google Scholar 

  • Ericsson HM, Sherris JC (1971) Antimicrobial sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand [B] [Suppl] 217:1–90

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special ref- erence to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Florey HW (1949) Historical introduction. In: Florey HW, Chain E, Heatley NG, Jennings MA, Sanders AG, Abraham EP, Florey ME (eds) Antibiotics, a survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants, vol I. Oxford University Press, London New York, pp 1–3

    Google Scholar 

  • Florey HW (1955) Antibiotic products of a versatile fungus. Arch Intern Med 43:480–490

    CAS  Google Scholar 

  • Florey HW (1956) The medical aspects of the development of resistance to antibiotics. G Microbiol 2:361–370

    Google Scholar 

  • Frost BM, Valiant ME (1964) An evaluation of cephalosporin derivatives in vitro and in experimental infections. J Pathol Bacteriol 88:125–136

    PubMed  CAS  Google Scholar 

  • Fu KP, Neu HC (1979) Inactivation of ß-lactam antibiotics by Legionella pneumophila. Antimicrob Agents Chemother 16:561–564

    PubMed  CAS  Google Scholar 

  • Gadebusch HH, Miraglia GJ, Busch HI, Goodwin G, Pan S, Renz K (1972) Cephradine - A new orally absorbed cephalosporin antibiotic. Antimicrob Antineoplast Chemother 1/2:1059–1062

    CAS  Google Scholar 

  • Gadebusch HH, Schwind R, Lukaszow P, Whitney R, McRipley RJ (1978) Cephamycin derivatives: comparison of the in vitro and in vivo antibacterial activities of SQ 14,359, CS-1170 and cefoxitin. J Antibiot 1046–1058

    Google Scholar 

  • Gardner AD (1940) Morphological effects of penicillin on bacteria. Nature 146:837–838

    Google Scholar 

  • Garrod LP (1960a) Relative antibacterial activity of three penicillins. Br Med J 1:527–529

    CAS  Google Scholar 

  • Garrod LP (1960b) The relative antibacterial activity of four penicillins. Br Med J 2:1695–1696

    CAS  Google Scholar 

  • Garrod LP, O’Grady F (1971) Antibiotics and chemotherapy, 3rd edn. Livingstone, Edinburgh London, p 90

    Google Scholar 

  • Georgopoulos A, Schütze E (1980) Concentrations of various antibiotics in serum and fluids accumulated in diffusion chambers implanted in various sites in rabbits. Antimicrob Agents Chemother 17:779–783

    PubMed  CAS  Google Scholar 

  • Godzeski CW, Brown C, Pavey D, McGowen J (1961) In vitro examination of levopenicillin. In: Finland M, Savage GM (eds) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda, MD, pp 547–554

    Google Scholar 

  • Godzeski CW, Brier G, Pavey DE (1963) Cephalothin, a new cephalosporin with a broad antibacterial spectrum. I. In vitro studies employing the gradient plate technique. Appl Microbiol 11:122–127

    PubMed  CAS  Google Scholar 

  • Goering RV, Sanders CC, Sanders Jr WE (1978) Comparison of BL-S 786 with cephalothin, cefamandole, and cefoxitin in vitro and in treatment of experimental infections in mice. J Antibiot 31:363–372

    PubMed  CAS  Google Scholar 

  • Goldstein FW, Kitzis MD, Acar JF (1979) Effect of clavulanic acid and amoxycillin formulation against ß-lactamase producing gram-negative bacteria in urinary tract infections. J Antimicrob Chemother 5:705–709

    PubMed  CAS  Google Scholar 

  • Grassi GG, Ferrara A, Navone A, Sala P (1980) Effect of subinhibitory concentration of antibiotics on the emergence of drug resistant bacteria in vitro. J Antimicrob Chemother 6:217–223

    PubMed  CAS  Google Scholar 

  • Grasso S, Meinardi G, Carneri I de, Tamassia V (1978) New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 13:570–576

    PubMed  CAS  Google Scholar 

  • Gratia A, Dath S (1924) Propriétés bactériolytiques de certaines Moisissures. C R Soc Biol (Paris) 91:1442–1443

    Google Scholar 

  • Gratia A, Dath S (1925) Moisissures et microbes bactériophages. C R Soc Biol (Paris) 92:461–462

    Google Scholar 

  • Greenwood D, O’Grady F (1975) Potent combinations of ß-lactam antibiotics using the ßlactamase inhibition principle. Chemotherapy 21:330–341

    PubMed  CAS  Google Scholar 

  • Grunberg E, Cleeland R, Beskid G, DeLorenzo WF (1976). In vivo synergy between 6ßamidinopenicillanic acid derivatives and other antibiotics. Antimicrob Agents Chemother 9:589–594

    PubMed  CAS  Google Scholar 

  • Hartman PA (1968) Gradient methods. In: Miniaturized microbiological methods. Academic Press, New York London, pp 155–158

    Google Scholar 

  • Heatley NG (1956) Comparative serum concentration and excretion experiments with benzyl penicillin (G) and phenoxymethyl penicillin (V) on a single subject. Antibiot Med 2:33–41

    PubMed  CAS  Google Scholar 

  • Heerema MS, Musher DM, Williams Jr TW (1979) Clavulanic acid and penicillin in treatment of Staphylococcal aureus renal infection in mice. Antimicrob Agents Chemother 16:798–800

    PubMed  CAS  Google Scholar 

  • Hill GB (1977) Therapeutic evaluation of minocycline and tetracycline for mixed anaerobic infection in mice. Antimicrob Agents Chemother 11:625–630

    PubMed  CAS  Google Scholar 

  • Hobby GL, Meyer K, Chaffee E (1942) Observations on the mechanism of action of penicillin. Proc Soc Exp Biol Med 50:281–285

    CAS  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe lab manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg VA

    Google Scholar 

  • Hunter PA, Reading C, Witting DA (1978) In vitro and in vivo properties of BRL 14151, a novel beta-lactam with beta-lactamase-inhibiting properties. In: Siegenthaler W, Lüthy R (eds) Current chemotherapy, vol 1. Proceedings 10th international congress of chemotherapy. American Society for Microbiology, Bethesda MD, pp 478–480

    Google Scholar 

  • Jackson RT, Harris LF, Alford RH (1978) Sodium clavulanate potentiation of cephalosporin activity versus cephalothin-resistant Klebsiella pneumoniae. In: Siegenthaler W, Lüthy R (eds) Current chemotherapy, vol 1. Proceedings 10th international congress chemotherapy. American Society for Microbiology, Bethesda MD, pp 480–482

    Google Scholar 

  • Jorgensen JH, Alexander GA, Johnson JE (1980) Practical anaerobic broth-disc elution susceptibility test. Antimicrob Agent Chemother 17:740–742

    CAS  Google Scholar 

  • Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new ß-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 32:1–12

    PubMed  CAS  Google Scholar 

  • Karady S, Pines SH, Weinstock LM, Roberts FE, Brenner GS, Hoinowski AM, Cheng TY, Sletzinger M (1972) Semisynthetic cephalosporins via a novel acyl exchange reaction. J Am Chem Soc 94:1410–1411

    PubMed  CAS  Google Scholar 

  • Kato T, Kurashige S, Chabbert YA, Mitsuhashi S (1978) Determination of the ID50 values of antibacterial agents in agar. J Antibiot 31:1299–1303

    PubMed  CAS  Google Scholar 

  • Kind AC, Kestle KG, Standiford HC, Kirby WMM (1968) Laboratory and clinical experience with cephalexin. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 361–365

    Google Scholar 

  • Knudsen ET, Rolinson GN (1959) Absorption and excretion studies of the potassium salt of 6 (a-phenoxypropionamido) penicillanic acid. Lancet 11:1105–1109

    Google Scholar 

  • Kolodny MH, Denhoff E (1946) Reactions in penicillin therapy. JAMA 130:1058–1061

    CAS  Google Scholar 

  • Krogstad DJ, Moellering RC Jr (1980) Combinations of antibiotics, mechanisms of interaction against bacteria. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 298–341

    Google Scholar 

  • Kropp H, Kahan JS, Kahan FM, Sundelof J, Darland G, Birnbaum J (1976) Thienamycin. A new ß-lactam antibiotic. II. In vitro and in vivo evaluation. In: 16th intersc conf antimicrob agents chemother, abstract 228. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Kropp H, Sundelof J, Kahan JS, Kahan FM, Birnbaum J (1980) MK 0787 (N-formimidoylthienamycin): evaluation of in vitro and in vivo activity. Antimicrob Agents Chemother 17:993–1000

    PubMed  CAS  Google Scholar 

  • Kuck NA (1975) Effects of minocycline and other antibiotics on Fusobacterium necrophorum infections in mice. Antimicrob Agents Chemother 7:421–425

    PubMed  CAS  Google Scholar 

  • Kunin CM (1967) Clinical significance of protein binding of penicillins. Ann NY Acad Sci 145:282–289

    PubMed  CAS  Google Scholar 

  • Kunst MW, Mattie H (1978) Cefazolin and cephradine: relationship between antibacterial activity in vitro and in mice experimentally infected with Escherichia coli. J Infect Dis 137:391–402

    PubMed  CAS  Google Scholar 

  • Kurzynski TA, Yrios JW, Helstad AG, Field CR (1976) Aerobically incubated thioglycollate broth disc method for antibiotic susceptibility testing of anaerobes. Antimicrob Agents Chemother 10:727–732

    PubMed  CAS  Google Scholar 

  • Lang SDR, Edwards DJ, Durack DT (1980) Comparison of cefoperazone, cefotaxime and moxalactam (LY 127935) against aerobic gram-negative bacilli. Antimicrob Agents Chemother 17:488–493

    PubMed  CAS  Google Scholar 

  • Leitner F, Goodhines RA, Buck RE, Price KE (1979) Bactericidal activity of cefadroxil, cephalexin, and cephradine in an in vitro pharmacokinetic model. J Antibiot 32:718–732

    PubMed  CAS  Google Scholar 

  • Lincoln LJ, Weinstein AJ, Gallagher M, Abrutyn E (1977) Penicillinase-resistant penicillins plus gentamicin in experimental enterococcal endocarditis. Antimicrob Agents Chemother 12:484–489

    PubMed  CAS  Google Scholar 

  • Lorian V (1975) Some effects of subinhibitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother 7:864–870

    PubMed  CAS  Google Scholar 

  • Lorian V (1980) Effects of subminimum inhibitory concentrations of antibiotics on bacteria. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 342–408

    Google Scholar 

  • Louie TJ, Onderdonk AB, Gorbach SL, Bartlett JG (1977). Therapy for experimental intraabdominal sepsis: Comparison of four cephalosporins with clindamycin plus gentamicin. J Infect Dis [Suppl] 135:S18–S22

    Google Scholar 

  • Marcy SM, Klein JO (1970) The isoxazolyl penicillins: oxacillin, cloxacillin, and dicloxacillin. Med Clin North Am 54:1127–1143

    PubMed  CAS  Google Scholar 

  • Martin WJ, Nichols DR, Heilman FR (1955) Penicillin V, a new type of penicillin: prelim- inary clinical and laboratory observations. Proc Staff Meet Mayo Clin 30:467–476

    PubMed  CAS  Google Scholar 

  • Masuda G, Yajima T, Nakamura K, Yanagishita T, Hayashi H (1979) Comparative bactericidal activities of beta-lactam antibiotics determined in agar and broth media. J Antibiot 32:1168–1173

    PubMed  CAS  Google Scholar 

  • Matsuura S, Yoshida T, Sugeno K, Harada Y, Harada M, Kuwahara S (1978) 6059-S, a new parenterally active 1-oxacephalosporin: (2) pharmacological studies. In: 18th intersc conf antimicrob agents chemother, abstract 152. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Mattie H, Kunst MW (1978) Animal models for the assessment of potentiation of antibiotics by probenecid and by host resistance. Infection [Suppl 1] 6:S36–S37

    Google Scholar 

  • Mattie H, Goslings WRO, Noach EL (1973) Cloxacillin and nafcillin: serum binding and its relationship to antibacterial effect in mice. J Infect Dis 128:170–177

    PubMed  CAS  Google Scholar 

  • Miller AK (1971) In vivo evaluation of antibacterial chemotherapeutic substances. In: Perlman D (ed) Advances in applied microbiology, vol 14. Academic Press, New York London, pp 151–183

    Google Scholar 

  • Miller AK, Verwey WF (1954) Effect of probenecid on combined penicillin and triple sulfonamides therapy of experimental streptococcal infections. Antibiot Chemother 4:169–172

    CAS  Google Scholar 

  • Miller AK, Baron BJ, Verwey WF, Keller DG (1958) Novobiocin-penicillin combinations. II. Broadened spectrum of activity of combinations of novobiocin and penicillin. In: Welch H, Marti-Ibanez F (eds) Antibiotics annual. Medical Encyclopedia, New York, pp 38–42

    Google Scholar 

  • Miller AK, Celozzi E, Pelak BA, Stapley EO, Hendlin D (1972a) Cephamycins, a new family of ß-lactam antibiotics. III. In vitro studies. Antimicrob Agents Chemother 2:281–286

    CAS  Google Scholar 

  • Miller AK, Celozzi E, Kong Y, Pelak BA, Kropp H, Stapley EO, Hendlin D (1972b) Cephamycins, a new family of ß-lactam antibiotics. IV. In vivo studies. Antimicrob Agents Chemother 2:287–290

    CAS  Google Scholar 

  • Miller AK, Celozzi E, Kong Y, Pelak BA, Hendlin D, Stapley EO (1974) Cefoxitin, a semi-synthetic cephamycin antibiotic: in vivo evaluation. Antimicrob Agents Chemother 5:33–37

    PubMed  CAS  Google Scholar 

  • Miller AK, Celozzi E, Pelak BA, Birnbaum J, Stapley BO (1979) Correlation of in vitro susceptibility with in vivo efficacy in mice for cefoxitin in comparison with cephalosporins. J Antimicrob Chemother 5:569–579

    PubMed  CAS  Google Scholar 

  • Mine Y, Nonoyama S, Kojo H, Fukada S, Nishida M (1977) Nocardicin A, a new mono-cyclic ß-lactam antibiotic. V. In vivo evaluation. J Antibiot 30:932–937

    PubMed  CAS  Google Scholar 

  • Moellering RC, Swartz MN (1976) The newer cephalosporins. N Engl J Med 294:24–28

    PubMed  CAS  Google Scholar 

  • Moxon ER, Medeiros AA, O’Brien TF (1977) Beta-lactamase effect on ampicillin treatment of Haemophilus influenzae B bacteremia and meningitis in infant rats. Antimicrob Agents Chemother 12:461–464

    PubMed  CAS  Google Scholar 

  • Muggleton PW, O’Callaghan CH, Sevens WK (1964) Laboratory evaluation of a new antibiotic-cephaloridine (ceporin). Br Med J 11:1234–1237

    Google Scholar 

  • Murray PR, Christman JL (1978) Anaerobic susceptibility tests. Evaluation of the stability of antimicrobials in Wilkins-Chalgren broth and the effect of media prereduction. J Antibiot 31:1296–1298

    PubMed  CAS  Google Scholar 

  • Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgins CE, Hoehn MM, Stark WM, Whitney JG (1971) ß-Lactam antibiotics from Streptomyces. J Am Chem Soc 93:2308–2310

    PubMed  CAS  Google Scholar 

  • Nakao H, Yanagisawa H, Shimizu B, Kaneko M, Nagano M, Sugawara S (1976) A new semisynthetic 7-a-methoxycephalosporin, CS 1170: 7ß[[(cyanomethyl)thio]acetamido]7a-methoxy-3-[[(1-methyl-1H-tetrazol-5-yl)thio]methyl]-3-cephem-4-carboxylic acid. J Antibiot 29:554–558

    PubMed  CAS  Google Scholar 

  • Naumann P (1966) Bakteriologische and pharmakologische Eigenschaften der neuen Cephalosporic-Antibiotica I Cephalothin 1 Mitteilung. Arzneim Forsch (Drug Res) 16:818–825

    CAS  Google Scholar 

  • NCCLS (1975, suppl to be published) Approved Standard ASM-2. Performance standards for antimicrobial disc susceptibility tests. National Committee for Clinical Laboratory Standards, Villanova, PA

    Google Scholar 

  • NCCLS (1979) Proposed Standard: PSM 11. Proposed reference dilution procedure for antimicrobic susceptibility testing of anaerobic bacteria. National Committee for Clinical Laboratory Standards, Villanova, PA

    Google Scholar 

  • Neu HC (1976) Synergism of mecillinam, a beta-amidinopenicillanic acid derivative, combined with beta-lactam antibiotics. Antimicrob Agents Chemother 10:535–542

    PubMed  CAS  Google Scholar 

  • Neu HC, Aswapokee N, Fu KP, Aswapokee P (1979a) Antibacterial activity of a new 1oxacephalosporin compared with that of other ß-lactam compounds. Antimicrob Agents Chemother 16:141–149

    CAS  Google Scholar 

  • Neu HC, Aswapokee N, Aswapokee P, Fu KP (1979b) HR 756, a new cephalosporin active against gram-positive and gram-negative aerobic and anaerobic bacteria. Antimicrob Agents Chemother 15:273–281

    CAS  Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulfur and D-a-aminoadipic acid. Nature 175:548

    PubMed  CAS  Google Scholar 

  • Newton GGF, Abraham EP (1956) Isolation of cephalosporin C, a penicillin-like antibiotic containing D-a-aminoadipic acid. Biochem J 62:651–658

    PubMed  CAS  Google Scholar 

  • Ninane G, Joly J, Kraytman M, Piot P (1978) Bronchopulmonary infection due to ß-lactamase-producing Branhamella catarrhalis treated with amoxycillin/clavulanic acid. Lancet 2:257

    PubMed  CAS  Google Scholar 

  • Nishida M, Matsubara T, Murakawa T, Mine Y, Yokota Y, Kuwahara S, Goto S (1969) In vitro and in vivo evaluation of cefazolin, a new cephalosporin C derivative. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society Microbiology, Bethesda MD, pp 236–243

    Google Scholar 

  • Nishida M, Murakawa T, Kamimura T, Okada N, Sakamoto H, Kukada S, Nakamoto S, Yokota Y, Miki K (1976) Laboratory evaluation of FR 10612, a new oral cephalosporin derivative. J Antibiot 29:444–459

    PubMed  CAS  Google Scholar 

  • Nishida M, Mine Y, Nonoyawa S, Kojo H, Goto S, Kuwahara S (1977) Nocardin A, a new monocyclic ß-lactam antibiotic. III. In vitro evaluation. J Antibiot 30:917–925

    PubMed  CAS  Google Scholar 

  • Norden CW, Kennedy E (1970) Experimental osteomyelitis. I. A description of the model. J Infect Dis 122:410–418

    PubMed  CAS  Google Scholar 

  • Norden CW, Kennedy E (1971) Experimental osteomyelitis. II. Therapeutic trials and measurement of antibiotic levels in bone. J Infect Dis 124:565–571

    PubMed  CAS  Google Scholar 

  • O’Callaghan CH (1979) Description and classification of the newer cephalosporins and their relationship with the established compounds. J Antimicrob Chemother 5:635–671

    PubMed  Google Scholar 

  • O’Callaghan CH, Sykes RB, Ryan DM, Foord RD, Muggleton PW (1976a) Cefuroxime — a new cephalosporin antibiotic. J Antibiot 29:29–37

    Google Scholar 

  • O’Callaghan CH, Sykes RB, Griffiths A, Thornton JE (1976b) Cefuroxime, a new cephalosporin antibiotic: activity in vitro. Antimicrob Agents Chemother 9:511–519

    Google Scholar 

  • Onderdonk AB, Bartlett JG, Louie T, Sullivan-Seigler N, Gorbach SL (1976) Microbial synergy in experimental intra-abdominal abscesses. Infect Immun 13:22–26

    PubMed  CAS  Google Scholar 

  • Onishi HR, Daoust DR, Zimmerman SB, Hendlin D, Stapley EO (1974) Cefoxitin, a semi-synthetic cephamycin antibiotic: resistance to ß-lactamase inactivation. Antimicrob Agents Chemother 5:38–48

    PubMed  CAS  Google Scholar 

  • Patte JC, Hirsch H, Chabbert Y (1958) Etude des courbes d’effet bacteriostatique des associations d’antibiotiques. Ann Inst Pasteur (Paris) 94:621–625

    CAS  Google Scholar 

  • Peterson LR, Gerding DN (1978) Prediction of cefazolin penetration into high and low-protein-containing extravascular fluid: new method for performing simultaneous studies. Antimicrob Agents Chemother 14:533–538

    PubMed  CAS  Google Scholar 

  • Perfect JR, Land SDR, Durack DT (1980) Comparison of cotrimoxazole, ampicillin, and chloramphenicol in the treatment of experimental Haemophilus influenzae Type B meningitis. Antimicrob Agents Chemother 17:43–48

    PubMed  CAS  Google Scholar 

  • Reading C, Cole M (1977) Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11:852–857

    PubMed  CAS  Google Scholar 

  • Reid RD (1935) Some properties of a bacterial-inhibitory substance produced by a mold. J Bacteriol 29:215–220

    PubMed  CAS  Google Scholar 

  • Reimer LG, Mirrett S, Reller LB (1980) Comparison of in vitro activity of moxalactam (LY 127 935) with cefazolin, amikacin, tobramycin, carbenicillin, piperacillin, and ticarcillin against 420 blood culture isolates. Antimicrob Agents Chemother 17:412–416

    PubMed  CAS  Google Scholar 

  • Retsema JA, English AR, Girard AE (1980) CP 45,899 in combination with penicillin or ampicillin against penicillin-resistant Staphylococcus, Haemophilus influenzae and Bacteroides. Antimicrob Agents Chemother 17:615–622

    PubMed  CAS  Google Scholar 

  • Rippere RA (1980) Preparation and control of antibiotic susceptibility discs and other devices containing antibiotics. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 549–572

    Google Scholar 

  • Rolinson GN (1973) Laboratory evaluation of amoxycillin. Chemotherapy [Suppl] 18:1–10

    CAS  Google Scholar 

  • Rolinson GN, Sutherland R (1965) The binding of antibiotics to serum protein. Br J Pharmacol 25:638–650

    CAS  Google Scholar 

  • Rolinson GN, Stevens S, Batchelor FR, Wood JC, Chain EB (1960) Bacteriological studies on a new penicillin-BRL 1241. Lancet 11:564–567

    Google Scholar 

  • Rose SB, Miller RE (1939) Studies with the agar cup-plate method. I. A standardized agar cup-plate technique. J Bacteriol 38:525–537

    PubMed  CAS  Google Scholar 

  • Rosenblatt JE, Muray PR, Sonnenwirth AC, Joyce JL (1979) Comparison of anaerobic results obtained by different methods. Antimicrob Agents Chemother 15:351–355

    PubMed  CAS  Google Scholar 

  • Rosenthal A (1958) Follow-up study of fatal penicillin reactions. JAMA 167:1118–1121

    CAS  Google Scholar 

  • Rotilie CA, Fass RJ, Prior RB, Perkins RL (1975) Microdilution technique for antimicrobial susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother 7:311–315

    PubMed  CAS  Google Scholar 

  • Roy I, Bach V, Thadepalli H (1977) In vitro activity of ticarcillin against anaerobic bacteria compared with that of carbenicillin and penicillin. Antimicrob Agents Chemother 11:258–261

    PubMed  CAS  Google Scholar 

  • Ryan DM (1979) Implanted cotton threads; a novel method measuring concentrations of antibiotics in tissue fluid. J Antimicrob Chemother 5:735–739

    PubMed  CAS  Google Scholar 

  • Ryan DM, O’Callaghan CH, Muggleton PW (1976) Cefuroxime, a new cephalosporin antibiotic: activity in vivo. Antimicrob Agents Chemother 9:520–525

    PubMed  CAS  Google Scholar 

  • Rylander M, Brorson J-E, Johnsson J, Norrby R (1979) Comparison between agar and broth minimum inhibitory concentrations of cefamandole, cefoxitin and cefuroxime. Antimicrob Agents Chemother 15:572–579

    PubMed  CAS  Google Scholar 

  • Sabath LD, Finland M (1967) Resistance of penicillins and cephalosporins to beta-lactamases from gram-negative bacilli: some correlations with antibacterial activity. Ann NY Acad Sci 145:237–247

    PubMed  CAS  Google Scholar 

  • Sabath LD, McCall CE, Steigbigel NH, Finland M (1966) Synergistic penicillin combinations for treatment of human urinary-tract infections. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 149–155

    Google Scholar 

  • Sabath LD, Elder HA, McCall CE, Finland M (1967) Synergistic combinations of penicillins in the treatment of bacteriuria. N Engl J Med 277:232–238

    PubMed  CAS  Google Scholar 

  • Scheld WM, Fink FN, Fletcher DD, Sande MA (1979) Mecillinam-ampicillin synergism in experimental Enterobacteriaceae meningitis. Antimicrob Agents Chemother 16:271–276

    PubMed  CAS  Google Scholar 

  • Selwyn S (1979) Pioneer work on the “penicillin phenomenon,” 1870–1876. J Antimicrob Chemother 5:249–255

    PubMed  CAS  Google Scholar 

  • Shibata K, Fujii M (1970) Clinical studies of cefazolin in the surgical field. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 467–472

    Google Scholar 

  • Slack MPE, Wheldon DB, Swann RA, Perks E (1979) Cefsulodin, a cephalosporin with specific antipseudomonal activity; in vitro studies of the drug alone and in combination. J Antimicrob Chemother 5:687–691

    PubMed  CAS  Google Scholar 

  • Stapley EO, Jackson M, Hernandez S, Zimmerman SB, Currie SA, Mochales S, Mata JM, Woodruff HB, Hendlin D (1972) Cephamycins, a new family of ß-lactam antibiotics. I. Production by actinomycetes, including Streptomyces lactamdurams sp. n. Antimicrob Agents Chemother 2:122–131

    PubMed  CAS  Google Scholar 

  • Stapley EO, Cassidy PJ, Currie SA, Daoust D, Goegelman R, Hernandez S, Jackson M, Mata JM, Miller AK, Monaghan RL, Tunac JB, Zimmerman SB, Hendlin D (1977) Epithienamycins: Biological studies of a new family of ß-lactam antibiotics. In: 17th intersc conf antimicrob agents chemother, abstract 80. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Stapley EO, Birnbaum J, Miller AK, Wallick H, Hendlin D, Woodruff HB (1979) Cefoxitin and cephamycins: Microbiological studies. Rev Infect Dis 1:73–87

    PubMed  CAS  Google Scholar 

  • Steers E, Foltz EL, Graves BS (1959) An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot Chemother 9:307–311

    Google Scholar 

  • Sugawara S, Tajima M, Igarashi I, Ohya S, Utsui Y (1976) CS 1170, a new cephalosporin derivative. II. In vitro and in vivo antibacterial activities. In: 16th intersc conf antimicrob agents chemother, abstract 231. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Sutherland R, Rolinson GN (1970) a-Amino-p-hydroxybenzyl-penicillin (BRL 2333), a new semisynthetic penicillin: in vitro evaluation. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 411–415

    Google Scholar 

  • Sutherland R, Rolinson GN (1978) Penicillins and cephalosporins. In: Reeves DS, Phillips I, Williams JD, Wise R (eds) Laboratory methods in antimicrobial chemotherapy. Churchill Livingstone, Edinburgh New York London, pp 76–78

    Google Scholar 

  • Sutherland R, Burnett J, Rolinson GN (1970a) a-Carboxy-3-thienylmethylpenicillin (BRL 2288) a new semisynthetic penicillin: In vitro evaluation. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 390–395

    Google Scholar 

  • Sutherland R, Croyden EAP, Rolinson GN (1970b) Flucloxacillin, a new isoxazolyl penicillin, compared with oxacillin, cloxacillin, and dicloxicillin. Br Med J 4:455–460

    CAS  Google Scholar 

  • Sutter VL, Vargo VL, Finegold SM (1975) Wadsworth. Anaerobic bacteriology manual, 2nd edn. University of California Los Angeles Extention division, Los Angeles

    Google Scholar 

  • Sutter VL, Barry AL, Wilkins TD, Zabransky RJ (1979) Collaborative evaluation of a proposed reference dilution method of susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother 16:495–502

    PubMed  CAS  Google Scholar 

  • Sykes RB, Matthew M (1976) The ß-lactamases of gram-negative bacteria and their role in resistance to ß-lactam antibiotics. J Antimicrob Chemother 2:115–157

    PubMed  CAS  Google Scholar 

  • Sykes RB, Matthews M (1979) Detection, assay and immunology of ß-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) Beta-Lactamases. Academic Press, London New York, pp 17–49

    Google Scholar 

  • Tachibana A, Komiya M, Kikuchi Y, Yano K, Mashimo K (1980) Pharmacological studies on YM 09330, a new parenteral cephamycin derivative. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease, vol 1. American Society for Microbiology, Washington DC, pp 273–275

    Google Scholar 

  • Tally FP, Jacobus NV, Gorbach SL (1978) In vitro activity of thienamycin. Antimicrob Agents Chemotherapy 14:436–438

    CAS  Google Scholar 

  • Tally FP, O’Keefe JP, Sullivan NM, Gorbach SL (1979) Inactivation of cephalosporins by Bacteroides. Antimicrob Agents Chemother 16:565–571

    PubMed  CAS  Google Scholar 

  • Taryle DA, Good Jr JT, Relier LB, Sahn SA (1980) Penetration of cephradine into normal, inflammatory, and infected pleural fluids in rabbits. J Antimicrob Chemother 6:143–149

    PubMed  CAS  Google Scholar 

  • Thadepalli H, Roy I, Bach VT, Webb D (1979) In vitro activity of mezlocillin and its related compounds against aerobic and anaerobic bacteria. Antimicrob Agents Chemother 15:487–490

    PubMed  CAS  Google Scholar 

  • Thornsberry C (1980) Automation in antibiotic susceptibility testing. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 193–205

    Google Scholar 

  • Thornsberry C, Baker CN, Kirren LA (1978) In vitro activity of antimicrobial agents on Legionnaires’ disease bacterium. Antimicrob Agents Chemother 13:78–80

    PubMed  CAS  Google Scholar 

  • Thrupp L (1974) Newer cephalosporins and “expanded-spectrum” penicillins. In: Elliott HW, Okun R, George R (eds) Annual review of pharmacology. Annual Reviews, Palo Alto, pp 435–467

    Google Scholar 

  • Thrupp LD (1980) Susceptibility testing of antibiotics in liquid media. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore London, pp 73–113

    Google Scholar 

  • Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins. How the beta-lactam antibiotics kill and lyse bacteria. In: Starr MP, Ingraham JL, Raffel S (eds) Annual review microbiology, vol 33. Annual Reviews, Palo Alto, pp 113–137

    Google Scholar 

  • Tsai YH, Williams EB, Hirth RS, Price KE (1975) Pneumococcal meningitis - therapeutic studies in mice. Chemotherapy 21:342–357

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Oishi T, Iwagishi C, Iwahi T (1971) In vitro antibacterial activity of disodium a-sulfobenzylpenicillin. J Antibiot 24:607–619

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Kondo M, Nagatowo H (1978a) SCE-129, antipseudomonal cephalosporin: in vitro and in vivo antibacterial activities. Antimicrob Agents Chemother 13:137–145

    CAS  Google Scholar 

  • Tsuchiya K, Kida M, Kondo M, Ono H, Takeuchi M, Nishi T (1978b) SCE-963, a new broad-spectrum cephalosporin: in vitro and in vivo antibacterial activities. Antimicrob Agents Chemother 14:551–568

    Google Scholar 

  • Tybring L, Melchior NH (1975) Mecillinam (FL 1060), a 6-ß-amidinopenicillanic acid derivative: bactericidal action and synergy in vitro. Antimicrob Agents Chemother 8:271–276

    PubMed  CAS  Google Scholar 

  • Ueo K, Fukuoka Y, Hayashi T, Yasuda T, Taki H, Tai M, Watanabe Y, Saikawa I, Mitsuhashi S (1977) In vitro and in vivo antibacterial activity of T 1220, a new semisynthetic penicillin. Antimicrob Agents Chemother 12:455–460

    PubMed  CAS  Google Scholar 

  • Uri JV, Actor P, Guarini JR, Phillips L, Pitkin D, Demarinis RM, Weisbach JA (1978) Biological and chemotherapeutic studies on three semisynthetic cephamycins. J Antibiot 31:82–91

    PubMed  CAS  Google Scholar 

  • Verbist L (1978) In vitro activity of piperacillin, a new semisynthetic penicillin with an unusually broad spectrum of activity. Antimicrob Agents Chemother 13:349–357

    PubMed  CAS  Google Scholar 

  • Vincent JG, Vincent HW (1944) Filter paper modification of the Oxford cup penicillin determination. Proc Soc Exp Biol Med 55:162–164

    CAS  Google Scholar 

  • von Daehne W, Godfredsen WO, Roholt K, Tybring L (1970) Pivampicillin, a new orally active ampicillin ester. In: Hobby GL (ed) Antimicrobial agents and chemotherapy. American Society for Microbiology, Bethesda MD, pp 431–437

    Google Scholar 

  • Wallick H, Hendlin D (1974) Cefoxitin, a semisynthetic cephamycin antibiotic: susceptibility studies. Antimicrob Agents Chemother 5:25–32

    PubMed  CAS  Google Scholar 

  • Warren G (1965/66) The prognostic significance of penicillin serum levels and protein binding in clinical medicine. A review of current studies. Chemotherapy 10:339–358

    Google Scholar 

  • Watt B (1979) Antibiotic susceptibility of anaerobic bacteria. J Inf [Suppl 1] 1:39–48

    CAS  Google Scholar 

  • Weaver SS, Bodey GP, LeBlanc BM (1979) Thienamycin: New beta-lactam antibiotic with potent broad-spectrum activity. Antimicrob Agents Chemother 15:518–521

    PubMed  CAS  Google Scholar 

  • Weaver SS, LeBlanc BM, Bodey GP (1980) In vitro studies of 1-oxacephalosporin (LY 127935), a new beta-lactam antibiotic. Antimicrob Agents Chemother 17:92–95

    PubMed  CAS  Google Scholar 

  • Weinstein WM, Onderdonk AB, Bartlett JG, Gorwood SL (1974) Experimental intra-abdominal abscesses in rats: development of an experimental model. Infect Immun 10:1250–1255

    PubMed  CAS  Google Scholar 

  • Welch H, Marti-Ibanez F (1960) The story of antibiotics. In: The antibiotic saga. Medical Encyclopedia, New York, p 19

    Google Scholar 

  • Werner H, Krasemann C, Ungerechts J (1979) Cefoxitin-Empfindlichkeit von Cephalosporinase-positiven und -negativen Bacteroidaceae. Infection [Suppl 1] 7:S43–S46

    Google Scholar 

  • West SEH, Wilkins TD (1980) Vaspar broth-disk procedure for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother 17:288–291

    PubMed  CAS  Google Scholar 

  • White AC, Couch RA, Foster F, Calloway J, Hunter W, Knight V (1955) Absorption and antimicrobial activity of penicillin V (phenoxymethyl penicillin). In: Welch H, MartiIbânez F (eds) Antibiotics annual. Medical Encyclopedia, New York, pp 490–500

    Google Scholar 

  • Wick WE (1967) Cephalexin, a new orally absorbed cephalosporin antibiotic. Appl Microbiol 15:765–769

    PubMed  CAS  Google Scholar 

  • Wick WE (1972) Biological evaluation. In: Flynn EH (ed) Cephalosporins and penicillins. Chemistry and biology. Academic Press, New York London, p 499

    Google Scholar 

  • Wick WE, Boniece WS (1965) In vitro and in vivo laboratory evaluation of cephaloglycin and cephaloridine. Appl Microbiol 13:248–253

    PubMed  CAS  Google Scholar 

  • Wick WE, Preston DA (1972) Biological properties of three 3-heterocyclic-thiomethyl cephalosporin antibiotics. Antimicrob Agents Chemother. 1:221–234

    PubMed  CAS  Google Scholar 

  • Wildonger KJ, Leanza WJ, Miller TW, Christensen BG (1979) N-acetimidoyl and N-formimidoyl thienamycin — chemically stable, broad spectrum derivatives. In: 19th intersc conf antimicrob agents chemother, abstract 232. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Wilkins TD, Smith LDS (1974) Chemotherapy of an experimental Fusobacterium (sphaero-phorus) necrophorum infection in mice. Antimicrob Agents Chemother 5:658–662

    PubMed  CAS  Google Scholar 

  • Wilkins TD, Thiel T (1973) Modified broth-disc method for testing the antibiotic susceptibility of anaerobic bacteria. Antimicrob Agents Chemother 3:350–356

    PubMed  CAS  Google Scholar 

  • Williamson GM, Morrison JK, Stevens KJ (1961) A new synthetic penicillin. Lancet 1:847–850

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Bedford KA (1978) In vitro study of clavulanic acid in combination with penicillin, amoxycillin, and carbenicillin. Antimicrob Agents Chemother 13:389–393

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Bedford KA (1979) LY 127935, a novel oxa-ß-lactam: an in vitro comparison with other ß-lactam antibiotics. Antimicrob Agents Chemother 16:341–345

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Bedford KA (1980) Clavulanic acid and CP-45,899: a comparison of their in vitro activity in combination with penicillins. J Antimicrob Chemother 6:197–206

    PubMed  CAS  Google Scholar 

  • Wright WE, Line VD (1980) Biliary excretion in rats: influence of molecular weight. Antimicrob Agents Chemother 17:842–846

    PubMed  CAS  Google Scholar 

  • Wright WW, Kirshbaum A, Arret A, Putnam LE, Welch W (1955) Serum concentrations and urinary excretion following oral administration of penicillin V and comparison with penicillin G. Antibiot Med 1:490–495

    PubMed  CAS  Google Scholar 

  • Wüst J, Wilkins TD (1978) Effect of clavulanic acid on anaerobic bacteria resistant to betalactam antibiotics. Antimicrob Agents Chemother 13:130–133

    PubMed  Google Scholar 

  • Yoshida T, Matsuura S, Mayama M, Kameda Y, Kuwahara S (1980) Moxalactam (6059-S) a novel 1-oxa-ß-lactam with an expanded antibacterial spectrum: laboratory evaluation. Antimicrob Agents Chemother 17:302–312

    PubMed  CAS  Google Scholar 

  • Zak O, Kradolfer F, Konopka EA, Kunz S, Batt E (1978) CGP 7174/E (Takeda SCE 129): activity against systemic and urinary tract infections in mice and rats. In: Siegenthaler W, Lüthy R (eds) Current chemotherapy and infectious disease. Proceedings 10th international congress chemotherapy, vol 1. American Society for Microbiology, Bethesda MD, pp 846–848

    Google Scholar 

  • Zak O, Konopka EA, Tosch W, Zimmerman W, Kunz S, Fehlmann H, Kradolfer F (1980) Experimental studies of cefotiam (CGP 14221/E). In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease, vol 1. American Society for Microbiology, Washington, DC, pp 223–225

    Google Scholar 

  • Zimmerman SB, Stapley EO (1976) Relative morphological effects induced by cefoxitin and other beta-lactam antibiotics in vitro. Antimicrob Agents Chemother 9:318–326

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, A.K. (1983). In Vitro and In Vivo Laboratory Evaluation of β-Lactam Antibiotics. In: Demain, A.L., Solomon, N.A. (eds) Antibiotics. Handbook of Experimental Pharmacology, vol 67 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68901-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68901-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68903-1

  • Online ISBN: 978-3-642-68901-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics