Skip to main content

Regulation of Cell Growth and Transformation by Tyrosine-Specific Protein Kinases: The Search for Important Cellular Substrate Proteins

  • Chapter
Retroviruses 2

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 107))

Abstract

It is now well established that post-translational modification of vertebrate cell proteins can occur by phosphorylation at serine, threonine, and tyrosine. Many serine- and threonine-speciflc protein kinases and their substrates have been extensively characterized, and in several instances protein phosphorylation has been shown to play an important role in the regulation of cell metabolism through alteration of the properties of specific enzymes. Historically, evidence that modulation of protein function led to a significant change in metabolism often predated the discovery that the protein in question was a phosphoprotein and the isolation of the regulatory protein kinase. For example, increased glycogenolysis in liver slices, under conditions of adrenaline or glucagon treatment, was correlated with activation of the enzyme glycogen phosphorylase. The active form of glycogen phosphorylase was subsequently found to be a phosphoprotein, and the protein kinase responsible, phosphorylase kinase, was characterized (Krebs and Fischer 1956). The regulation of phosphorylase kinase itself by phosphorylation has since been elucidated in great detail (Cohen 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins B, Hunter T, Beemon K (1982 a) Expression of the PRC II avian sarcoma virus genome. J Virol 41: 767–780

    Google Scholar 

  • Adkins B, Hunter T, Sefton BM (1982b) The transforming proteins of PRCII virus and Rous sarcoma virus form a complex with the same two cellular proteins. J Virol 43: 448–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Hunter T (1981) Structural components of flbronectins from normal and transformed cells. J Biol Chem 256: 7671–7677

    CAS  PubMed  Google Scholar 

  • Amini S, Kaji A (1983) Association of pp36, a phosphorylated form of the presumed target protein for the src protein of Rous sarcoma virus, with the membrane of chicken cells transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 80: 960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo A-P, Darlix J-L, Spahr P-F (1983) A cellular protein phosphorylated by the avian sarcoma virus transforming gene product is associated with ribonucleoprotein particles. EMBO Journal 2: 309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ash JF, Vogt PK, Singer SJ (1976) Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci USA 73: 2047–2051

    Article  Google Scholar 

  • Avruch J, Nemenoff RA, Blackshear PJ, Pierce MW, Osathanodh R (1982) Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes. J Biol Chem 257: 15162–15166

    CAS  PubMed  Google Scholar 

  • Barbacid M, Beemon K, Devare SG (1980) Origin and functional properties of the major gene product of the Snyder-Theilen strain of feline sarcoma virus. Proc Natl Acad Sci USA 77: 5158–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbacid M, Breitman ML, Lauver AV, Long LK, Vogt PK (1981a) The transformation- specific proteins of avian (Fujinami and PRC-II) and feline ( Snyder-Theilen and Gardner- Arnstein) sarcoma viruses are immunologically-related. Virology 110: 411–419

    Google Scholar 

  • Barbacid M, Donner L, Ruscetti SK, Scherr CJ (1981b) Transformation defective mutants of Snyder-Theilen feline sarcoma virus lack tyrosine specific protein kinase activity. J Virol 39: 246–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beemon K (1981) Transforming proteins of some feline and avian sarcoma viruses are related structurally and functionally. Cell 24: 145–153

    Article  CAS  PubMed  Google Scholar 

  • Beemon K, Ryden T, McNelly EA (1982) Transformation by avian sarcoma viruses leads to phosphorylation of multiple cellular proteins on tyrosine residues. J Virol 42: 742–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop JM, Varmus H (1982) Functions and origins of retroviral transforming genes. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor, New York, pp 999–1108

    Google Scholar 

  • Bissell MJ, White RC, Hatie C, Bassham JA (1973) Dynamics of metabolism of normal and virus-transformed chick cells in culture. Proc Natl Acad Sci USA 70: 2951–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blithe DL, Richert N, Pastan IH (1982) Purification of a tyrosine-speciflc protein kinase from Rous sarcoma virus-induced rat tumors. J Biol Chem 257: 7135–7142

    CAS  PubMed  Google Scholar 

  • Brautigan DL, Bornstein DL, Gallis B (1981) Phosphotyrosyl-protein phosphatase: specific inhibition by Zn2 +. J Biol Chem 256: 6519–6522

    CAS  PubMed  Google Scholar 

  • Brugge J, Darrow D (1982) Rous sarcoma virus-induced phosphorylation of a 50,000 molecular weight cellular protein. Nature 295: 250–253

    Article  CAS  PubMed  Google Scholar 

  • Brugge J, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, and two cellular proteins. J Virol 26: 773–782

    Google Scholar 

  • Brugge J, Yonemoto W, Darrow D (1983) Interaction between the Rous sarcoma virus transforming protein and two cellular phosphoproteins: analysis of the turnover and distribution of this complex. Mol Cell Biol 3: 9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhrow SA, Cohen S, Stavros JV (1982) Affinity labeling of the protein kinase associated with the epidermal growth factor receptor in membrane vesicles from A431 cells. J Biol Chem 257: 4019–4022

    CAS  PubMed  Google Scholar 

  • Burridge KM, Feramisco J (1980) Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19: 587–595

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, King L Jr, Cohen S (1979) Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. J Biol Chem 254: 4884–4891

    CAS  PubMed  Google Scholar 

  • Casnellie JE, Harrison ML, Hellstrom KE, Krebs EG (1982 a) A lymphoma protein with an in vitro site of tyrosine phosphorylation homologous to that in pp60src. J Biol Chem 257: 13877–13879

    Google Scholar 

  • Casnellie JE, Harrison ML, Pike LJ, Hellstrom KE, Krebs EG (1982b) Phosphorylation of synthetic peptides by a tyrosine protein kinase from the particulate fraction of a lymphoma cell line. Proc Natl Acad Sci USA 79: 282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y-SE, Chen LB (1981) Detection of phosphotyrosine-containing 36,000 dalton protein in the framework of cells transformed with Rous sarcoma virus. Proc Natl Acad Sci USA 78: 2388–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke FM, Masters CJ (1974) On the association of glycolytic components in skeletal muscle extracts. Biochem Biophys Acta 358: 193–207

    CAS  PubMed  Google Scholar 

  • Cohen P (1978) The role of cyclic AMP dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle. In: Current topics in cellular regulation, vol 14. Academic Press, New York, pp 117–196

    Google Scholar 

  • Cohen S, Carpenter G, King LR (1980) Epidermal growth factor-receptor-protein kinase interactions. J Biol Chem 255: 4834–4842

    CAS  PubMed  Google Scholar 

  • Cohen S, Ushiro H, Stoschek C, Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257: 1523–1531

    CAS  PubMed  Google Scholar 

  • Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75: 2021–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett MS, Erikson E, Purchio AF, Brugge JS, Erikson RL (1979) A normal cell protein similar in structure and function to the avian sarcoma virus transforming gene product. Proc Natl Acad Sci USA 76: 3159–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collett MS, Erikson E, Erikson RL (1980) Avian sarcoma virus transforming gene product pp60src shows protein kinase activity specific for tyrosine. Nature 285: 167–169

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA, Hunter T (1981a) Changes in protein phosphorylation in Rous sarcoma virus transformed chicken embryo cells. Mol Cell Biol 1: 165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper J A, Hunter T (1981b) Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular proteins. Mol Cell Biol 1: 394–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JA, Hunter T (1981c) Similarities and differences between the effects of epidermal growth factor and Rous sarcoma virus. J Cell Biol 91: 878–883

    Article  CAS  PubMed  Google Scholar 

  • Cooper J A, Hunter T (1982) Discrete primary locations of a tyrosine protein kinase and of three proteins that contain phosphotyrosine in virally transformed chick fibroblasts. J Cell Biol 94: 287–296

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA, Hunter T (1983) Identification and characterization of cellular targets for tyrosine protein kinases. J Biol Chem 258: 1108–1115

    CAS  PubMed  Google Scholar 

  • Cooper JA, Bowen-Pope D, Raines E, Ross R, Hunter T (1982) Similar effects of platelet- derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31: 263–273

    Article  CAS  PubMed  Google Scholar 

  • Cooper J A, Nakamura KD, Hunter T, Weber MJ (1983 a) Phosphotyrosine-containing proteins and the expression of transformation parameters in cells infected with partial transformation mutants of Rous sarcoma virus. J Virol 46: 15–28

    Google Scholar 

  • Cooper JA, Reiss NA, Schwartz RJ, Hunter T (1983 b) Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 302: 218–223

    Google Scholar 

  • Cooper JA, Sefton BM, Hunter T (1983 c) The detection of phosphotyrosine in proteins. In: Corbin JD, Hardman JG (eds) Hormone action: protein kinases. Methods in Enzymology, Vol 99 Academic Press, New York, pp 387–402

    Google Scholar 

  • Courtneidge SA, Bishop JM (1982) Transit of pp60v -src to the plasma membrane. Proc Natl Acad Sci USA 79: 7117–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtneidge SA, Levinson AD, Bishop JM (1980) The protein encoded by the transforming gene of avian sarcoma virus (pp60src) and a homologous protein in normal cells (pp60proio -src) are associated with the membrane. Proc Natl Acad Sci USA 77: 3783–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtneidge S, Ralston R, Alitalo K, Bishop JM (1983) The subcellular location of an abundant substrate (p36) for tyrosine-specific protein kinases. Mol Cell Biol 3: 340–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross F, Hanafusa H (1983) Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of p60src are dispensable for transformation. Cell 34: 597–608

    Article  CAS  PubMed  Google Scholar 

  • Czernilofsky AP, Levinson AD, Varmus HE, Bishop JM, Tischler E, Goodman HM (1980) Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for the gene product. Nature 287: 193–203

    Article  Google Scholar 

  • David-Pfeuty T, Singer SJ (1980) Altered distribution of the cytoskeletal proteins vinculin and α-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 77: 6687–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker S (1982) Phosphorylation of the Mr = 34,000 protein in normal and Rous sarcoma virus transformed rat fibroblasts. Biochem Biophys Res Commun 109: 434–441

    Article  CAS  PubMed  Google Scholar 

  • Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18: 925–933

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Yahara I (1976) Temperature sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc Natl Acad Sci USA 73: 2047–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ek B, Heldin C-H (1982) Characterization of a tyrosine-specific kinase activity in human fibroblast membranes stimulated by platelet-derived growth factor. J Biol Chem 257: 10486–10492

    CAS  PubMed  Google Scholar 

  • Ek B, Westermark B, Wasteson A, Heldin C-H (1982) Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nature 295: 419–420

    Article  CAS  PubMed  Google Scholar 

  • Erikson E, Erikson RL (1980) Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus transforming gene product. Cell 21: 829–836

    Article  CAS  PubMed  Google Scholar 

  • Erikson E, Cook R, Miller GJ, Erikson RL (1981a) The same normal cell protein is phosphorylated after transformation by avian sarcoma viruses with unrelated transforming genes. Mol Cell Biol 1: 43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erikson E, Shealy DJ, Erikson RL (1981b) Evidence that viral transforming gene products and epidermal growth factor stimulate phosphorylation of the same cellular protein with similar specificity. J Biol Chem 256: 11381–11384

    CAS  PubMed  Google Scholar 

  • Erikson RL, Collett MS, Erikson E, Purchio AF (1979) Evidence that the avian sarcoma virus transforming gene product is a cyclic-AMP independent protein kinase. Proc Natl Acad Sci USA 76: 6260–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman RA, Hanafusa T, Hanafusa H (1980) Characterization of protein kinase activity associated with the transforming gene product of Fujinami sarcoma virus. Cell 22: 757–765

    Article  CAS  PubMed  Google Scholar 

  • Feldman RA, Wang L-H, Hanafusa H, Balduzzi PC (1982) Avian sarcoma virus UR2 encodes a transforming protein which is associated with a unique protein kinase activity. J Virol 42: 228–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foulkes JG, Howard RF, Ziemiecki A (1981) Detection of a novel mammalian protein phosphatase with an activity for phosphotyrosine. FEBS Lett 130: 197–200

    Article  CAS  PubMed  Google Scholar 

  • Foulkes JG, Erikson E, Erikson RL (1983) Separation of multiple phosphotyrosyl-protein phosphatases from chicken brain. J Biol Chem 258: 431–438

    CAS  PubMed  Google Scholar 

  • Frackelton AR, Ross AH, Eisen HN (1983) Characterization and use of monoclonal antibodies for isolation of phosphotyrosyl proteins from retro virus-transformed cells and growth factor-stimulated cells. Mol Cell Biol 3: 1343–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton AB (1982) How crowded is the cytoplasm? Cell 30: 345–347

    Article  CAS  PubMed  Google Scholar 

  • Geiger B (1979) A 130K protein from chicken gizzard: its location at the termini of microfilament bundles in cultured chicken cells. Cell 18: 193–205

    Article  CAS  PubMed  Google Scholar 

  • Geiger B (1982) Microheterogeneity of avian and mammalian vinculin: distinctive subcellular distribution of different isovinculins. J Mol Biol 159: 685–701

    Article  CAS  PubMed  Google Scholar 

  • Ghosh-Dastidar P, Fox CF (1983) Epidermal growth factor and epidermal growth factor receptor-dependent phosphorylation of a Mr = 34,000 protein substrate for pp60src. J Biol Chem 258: 2041 - 2044

    CAS  PubMed  Google Scholar 

  • Ghysdael J, Neil JC, Vogt PK (1981a) A third class of avian sarcoma viruses defined by related transformation specific proteins of Yamaguchi 73 and Esh sarcoma virus. Proc Natl Acad Sci USA 78: 2611–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghysdael J, Neil JC, Wallbank AM, Vogt PK (1981 b) Esh sarcoma virus codes for a gag-linked transformation-specific protein with an associated protein kinase activity. Virology 111: 386–400

    Google Scholar 

  • Gilmer TM, Erikson RL (1981) Rous sarcoma virus transforming protein, p60src, expressed in E. coli, functions as a protein kinase. Nature 294: 771–773

    CAS  PubMed  Google Scholar 

  • Gilmore TD, Radke K, Martin GS (1982) Tyrosine phosphorylation of a 50K cellular polypeptide associated with the Rous sarcoma virus transforming protein pp60src. Mol Cell Biol 2: 199–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg ME, Edelman GM (1983 a) Comparison of the 34,000 dalton pp60src substrate and a 38,000 dalton phosphoprotein identified by monoclonal antibodies. J Biol Chem 258: 8497–8502

    Google Scholar 

  • Greenberg ME, Edelman GM (1983 b) The 34kD-pp60src substrate is located at the plasma membrane in normal and RSV-transformed cells. Cell 33: 767–779

    Google Scholar 

  • Hanafusa T, Mathey-Prevot B, Feldman RA, Hanafusa H (1981) Mutants of Fujinami sarcoma virus which are temperature-sensitive for cellular transformation and protein kinase activity. J Virol 38: 347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampe A, Laprevotte I, Galibert F, Fedele LA, Sherr C (1982) Nucleotide sequences of feline retroviral oncogenes (v-fes) provide evidence for a family of tyrosine-specific protein kinase genes. Cell 30: 775–785

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Vogt PK (1981) Avian sarcoma virus PRCII: conditional mutants temperature sensitive in the maintenance of fibroblast transformation. Virology 109: 193–197

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (1982 a) Synthetic peptide substrates for a tyrosine protein kinase. J Biol Chem 257:4843–4848

    Google Scholar 

  • Hunter T (1982 b) Phosphotyrosine — a new protein modification. Trends Biochem Sci 7:246–249

    Google Scholar 

  • Hunter T, Sefton BM (1980) The transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77: 1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Cooper J A (1981) Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24: 741–752

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Sefton BM (1982) Protein kinases and viral transformation. In: Cohen P, Van Heyningen S (eds) The molecular actions of toxins and viruses. Elsevier/North Holland, Amsterdam, pp 333–366 (Molecular aspects of cellular regulation, vol 2 )

    Google Scholar 

  • Hunter T, Cooper JA ( 1983 a) A comparison of the tyrosine protein kinases encoded by retroviruses and activated by growth factors. In: Bradshaw R, Gill G, Fox CF (eds) Evolution of hormone/receptor systems, UCLA symposia. Liss, New York, pp 369–382

    Google Scholar 

  • Hunter T, Cooper J A ( 1983 b) The role of tyrosine phosphorylation in malignant transformation and in cellular growth control. In: Cohn W (ed) Prog Nucleic Acid Res Mol Biol, vol 29. Academic, New York, pp 221–233

    Google Scholar 

  • Ito S, Richert N, Pastan I (1982) Phospholipids stimulate phosphorylation of vinculin by the tyrosine-specific protein kinase of Rous sarcoma virus. Proc Natl Acad Sci USA 79: 4628–4631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Karlsson FA, Kahn CR (1981) Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187

    Article  Google Scholar 

  • Kawai S, Yoshida M, Segawa K, Sugiyama H, Ishizaki R, Toyoshima K (1980) Characterization of Y73, an avian sarcoma virus: A unique transforming gene and its product, a phosphopolyprotein with protein kinase activity. Proc Natl Acad Sci USA 77: 6199–6203

    Google Scholar 

  • King LE Jr, Carpenter G, Cohen S (1980) Characterization by electrophoresis of epidermal growth factor stimulated phosphorylation using A-431 membranes. Biochemistry 19: 1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Kitamura N, Kitamura A, Toyoshima K, Hirayama Y, Yoshida M (1982) Avian sarcoma virus Y73 genome sequence and structural similarity of its transforming gene product to that of Rous sarcoma virus. Nature 297: 205–208

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Kaji A (1980) Phosphoprotein associated with activation of the src gene product in myogenic cells. Biochem Biophys Res Commun 93: 278–284

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Tanaka A, Kaji A (1981) In vitro phosphorylation of the 36K protein in extract from Rous sarcoma virus-transformed chicken fibroblasts. J Biol Chem 256: 3053–3058

    CAS  PubMed  Google Scholar 

  • Krueger JG, Garber EA, Goldberg AR, Hanafusa H (1982) Changes in amino-terminal sequences of pp60src lead to decreased membrane association and decreased in vivo tumorigenicity. Cell 28: 889–896

    Article  CAS  PubMed  Google Scholar 

  • Lanks KW, Kasambalides EJ, Chinkers M, Brugge JS (1982) A major cytoplasmic glucose-regulated protein is associated with the Rous sarcoma virus transforming pp60src protein. J Biol Chem 257: 8604–8607

    CAS  PubMed  Google Scholar 

  • Laszlo A, Radke K, Chin S, Bissell MJ (1981) Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture. Proc Natl Acad Sci USA 78: 6241–6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15: 561–572

    Article  CAS  PubMed  Google Scholar 

  • Levinson AD, Oppermann H, Varmus HE, Bishop JM (1980) The purified protein product of the transforming gene of avian sarcoma virus phosphorylates tyrosine. J Biol Chem 255: 11973–11980

    CAS  PubMed  Google Scholar 

  • Levinson AD, Courtneidge SA, Bishop JM (1981) Structural and functional domains of the Rous sarcoma virus transforming protein (pp60src). Proc Natl Acad Sci USA 78: 1624–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsich LA, Cutt JR, Brugge JS (1982) Association of the transforming proteins of Rous, Fujinami, and Y73 avian sarcoma viruses with the same two cellular proteins. Mol Cell Biol 2: 875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manai M, Cozzone AJ (1982) Two-dimensional separation of phosphoamino acids from nucleoside monophosphates. Anal Biochem 124: 12–18

    Article  CAS  PubMed  Google Scholar 

  • Maness PF, Engeser H, Greenberg ME, O’Farrell M, Gall WE, Edelman GM (1979) Characterization of the protein kinase activity of avian sarcoma virus src gene product. Proc Natl Acad Sci USA 76: 5028–5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez R, Nakamura KD, Weber MJ (1982) Identification of phosphotyrosine-containing proteins in untransformed and Rous sarcoma virus-transformed chicken embryo cells. Mol Cell Biol 2: 653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathey-Prevot B, Hanafusa H, Kawai S (1982) A cellular protein is immunologically cross-reactive with and functionally homologous to the Fujinami sarcoma virus transforming protein. Cell 28: 897–906

    Article  CAS  PubMed  Google Scholar 

  • McGrath JP, Levinson AD (1982) Bacterial expression of an enzymatically active protein encoded by RSV src gene. Nature 295: 423–425

    Article  CAS  PubMed  Google Scholar 

  • Nakamura KD, Weber MJ (1982) Phosphorylation of a 36,000 Mr cellular protein in cells infected with partial transformation mutants of Rous sarcoma virus. Mol Cell Biol 2: 147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura KD, Martinez R, Weber MJ (1983) Tyrosine phosphorylation of specific proteins following mitogen stimulation of chicken embryo fibroblasts. Mol Cell Biol 3: 380–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neil JC, Delamarter JF, Vogt PK (1981a) Evidence for three classes of avian sarcoma viruses: comparison of the transformation-specific gene products of PRC II, Y73, and Fujinami viruses. Proc Natl Acad Sci USA 78: 1906–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neil JC, Ghysdael J, Vogt PK (1981b) Tyrosine-specific protein kinase activity associated with p105 of avian sarcoma virus PRCII. Virology 109: 223–228

    Article  CAS  PubMed  Google Scholar 

  • Neil JC, Ghysdael J, Vogt PK, Smart JE (1981c) Homologous tyrosine phosphorylation sites in transformation-specific gene products of distinct avian sarcoma viruses. Nature 291: 675–677

    Article  CAS  PubMed  Google Scholar 

  • Nigg EA, Sefton BM, Hunter T, Walter G, Singer SJ (1982) Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic src peptide. Proc Natl Acad Sci USA 79: 5322–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigg EA, Cooper JA, Hunter T (1983) Immunofluorescent localization of a 39,000 dalton substrate of tyrosine protein kinases to the cytoplasmic surface of the plasma membrane. J Cell Biol 96: 1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Nishimura J, Huang JS, Deuel TF (1982) Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes. Proc Natl Acad Sci USA 79: 4303–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppermann H, Levinson AD, Levintow L, Varmus HE, Bishop JM (1979) Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc Natl Acad Sci USA 76: 1804–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppermann H, Levinson W, Bishop JM (1981a) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci USA 78: 1067–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppermann H, Levinson AD, Levintow L, Varmus HE, Bishop JM, Kawai S (1981b) Two cellular proteins that immunoprecipitate with the transforming protein of Rous sarcoma virus. Virology 113: 736–751

    Article  CAS  PubMed  Google Scholar 

  • Patschinsky T, Sefton BM (1981) Evidence that there exist four classes of RNA tumor viruses which encode proteins with associated tyrosine protein kinase activities. J Virol 39: 104–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patschinsky T, Hunter T, Esch FS, Cooper J A, Sefton BM (1982) Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation. Proc Natl Acad Sci USA 79: 973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawson T, Guyden J, Kung T-H, Radke K, Gilmore T, Martin GS (1980) A strain of Fujinami sarcoma virus which is temperature-sensitive in protein phosphorylation and cellular trans-formation. Cell 22: 767–776

    Article  CAS  PubMed  Google Scholar 

  • Penman S, Fulton A, Capco D, Ben Ze’ev A, Wittelsberger S, Tse CF (1981) Cytoplasmic and nuclear architecture in cells and tissue: form, functions and mode of assembly. Cold Spring Harbor Symp Quant Biol 46: 1013–1028

    Article  CAS  Google Scholar 

  • Petruzzelli LM, Ganguly S, Smith CJ, Cobb MH, Rubin CH, Rosen OM (1982) Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc Natl Acad Sci USA 79: 6792–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike LJ, Gallis B, Casnellie JE, Bornstein P, Krebs EG (1982) Epidermal growth factor stimulates the phosphorylation, of synthetic tyrosine-containing peptides, by A431-cell membranes. Proc Natl Acad Sci USA 79: 1443–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponticelli AS, Whitlock CA, Rosenberg N, Witte ON (1982) In vivo tyrosine phosphorylations of the Abelson virus transforming protein are absent in its normal cellular homolog. Cell 29: 953–960

    Article  CAS  PubMed  Google Scholar 

  • Presek P, Glossmann H, Eigenbrodt E, Schoner W, Rubsamen H, Friis RR, Bauer H (1980) Similarities between a phosphoprotein (pp60src)-associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3′: 5′-monophosphate-independent protein kinase that phosphorylates pyruvate kinase type M2. Cancer Res 40: 1733–1741

    CAS  PubMed  Google Scholar 

  • Racker E (1972) Bioenergetics and the problem of tumor growth. Am Sci 60: 56–63

    CAS  PubMed  Google Scholar 

  • Radke K, Martin GS (1979) Transformation by Rous sarcoma virus: Effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc Natl Acad Sci USA 76: 5212–5216

    Google Scholar 

  • Radke K, Gilmore T, Martin GS (1980) Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21: 821–828

    Article  CAS  PubMed  Google Scholar 

  • Radke K, Carter VC, Moss P, Dehazya P, Schliwa M, Martin GS (1983) Membrane association of a 36,000 dalton substrate for tyrosine phosphorylation in chicken embryo fibroblasts transformed by avian sarcoma viruses. J Cell Biol 97: 1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Rasheed S, Barbacid M, Aaronson S, Gardner MB (1982) Origin and properties of a new feline sarcoma virus. Virology 117: 238–244

    Article  CAS  PubMed  Google Scholar 

  • Reddy EP, Smith MJ, Srinivasan A (1983) Nucleotide sequence of Abelson murine leukemia virus genome: structural similarity of its transforming gene to other one gene products with tyrosine-specific kinase activity. Proc Natl Acad Sci USA 80: 3623–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds FH Jr, Van de Ven WJM, Stephenson JR (1980 a) Abelson murine leukemia virus transformation-defective mutants with impaired P120-associated protein kinase activity. J Virol 36: 374–386

    Google Scholar 

  • Reynolds FH Jr, Van de Ven WJM, Stephenson JR (1980b) Feline sarcoma virus PI 15 associated protein kinase phosphorylates tyrosine. Identification of a cellular substrate conserved during evolution. J Biol Chem 255: 11040–11047

    Google Scholar 

  • Reynolds FH, Todaro GJ, Fryling C, Stephenson JR (1981a) Human transforming growth factors induce tyrosine phosphorylation of EGF receptors. Nature 292: 259–262

    Article  CAS  PubMed  Google Scholar 

  • Reynolds FH Jr, Van de Ven WJM, Blomberg J, Stephenson JR (1981 b) Differences in mechanisms of transformation by independent feline sarcoma virus isolates. J Virol 38: 1084–1089

    Google Scholar 

  • Reynolds FH Jr, Oroszlan S, Blomberg J, Stephenson JR (1982a) Tyrosine phosphorylation sites common to transforming proteins encoded by Gardner and Snyder-Theilen FeSV. Virology 122: 134–146

    Article  CAS  PubMed  Google Scholar 

  • Reynolds FH Jr, Oroszlan S, Stephenson JR (1982b) Abelson murine leukemia virus P120: Identification and characterization of tyrosine phosphorylation sites. J Virol 44: 1097–1101

    Google Scholar 

  • Richert ND, Davies PJA, Jay G, Pastan IH (1979) Characterization of an immune complex kinase in immunoprecipitates of avian sarcoma virus-transformed fibroblasts. J Virol 31: 695–706

    CAS  Google Scholar 

  • Richert ND, Blithe DL, Pastan IH (1982) Properties of the src kinase purified from Rous sarcoma virus-induced rat tumors. J Biol Chem 257: 7143–7150

    CAS  PubMed  Google Scholar 

  • Rohrschneider LR (1980) Adhesion plaques of Rous sarcoma virus transformed cells contain the src gene product. Proc Natl Acad Sci USA 77: 3514–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrschneider LR, Rosok M (1983) Transformation parameters and pp60src localization in cells infected with partial transformation mutants of Rous sarcoma virus. Mol Cell Biol 3: 731–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrschneider LR, Eisenman RN, Leitch CR (1979) Identification of a Rous sarcoma virus transformation-related protein in normal avian and mammalian cells. Proc Natl Acad Sci USA 76: 4479–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrschneider LR, Rosok M, Shriver K (1981) Mechanism of transformation by Rous sarcoma virus: events within adhesion plaques. Cold Spring Harbor Symp Quant Biol 46: 953–965

    Article  CAS  Google Scholar 

  • Rosenberg NE (1982) Abelson murine leukemia virus. In: Current topics in microbiology and immunology, vol 101. Springer, Berlin, Heidelberg, New York, pp 95–126

    Google Scholar 

  • Rosenberg NE, Clark DR, Witte ON (1981) Abelson murine leukemia virus mutants deficient in kinase activity and lymphoid cell transformation. J Virol 36: 766–774

    Google Scholar 

  • Rosok M, Rohrsehneider LR (1983) Increased phosphorylation of vinculin on tyrosine does not occur during the release of stress fibers before mitosis in normal cells. Mol Cell Biol 3: 475–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AH, Baltimore D, Eisen H (1981) Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294: 654–656

    Article  CAS  PubMed  Google Scholar 

  • Rubsamen H, Friis RR, Bauer H (1979) src gene product from different strains of avian sarcoma virus: kinetics and possible mechanism of heat inactivation of protein kinase activity from cells infected by transformation-defective, temperature-sensitive, and wild-type virus. Proc Natl Acad Sci USA 76: 967–971

    Google Scholar 

  • Rubsamen H, Saltenberger K, Friis RR, Eigenbrodt E (1982) Cytosolic malic dehydrogenase activity is associated with a putative substrate for the transforming gene product of Rous sarcoma virus. Proc Natl Acad Sci USA 79: 228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz D, Tizard R, Gilbert W (1982) The complete nucleotide sequence of the Pr-C strain of Rous sarcoma virus. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor, New York, pp 1338–1356

    Google Scholar 

  • Sefton BM, Beemon K, Hunter T (1978) Comparison of the expression of the src gene of Rous sarcoma virus in vitro and in vivo. J Virol 28: 957–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sefton BM, Hunter T, Beemon K (1979) Product of in vitro translation of the Rous sarcoma virus src gene has protein kinase activity. J Virol 30: 311–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sefton BM, Hunter T, Beemon K (1980a) Temperature-sensitive transformation by Rous sarcoma virus and temperature-sensitive protein kinase activity. J Virol 33: 220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sefton BM, Hunter T, Beemon K, Eckhart W (1980b) Phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20: 807–816

    Article  CAS  PubMed  Google Scholar 

  • Sefton BM, Hunter T, Ball EH, Singer SJ (1981a) Vinculin: a cytoskeletal substrate of the transforming protein of Rous sarcoma virus. Cell 24: 165–174

    Article  CAS  PubMed  Google Scholar 

  • Sefton BM, Hunter T, Raschke WC (1981 b) Evidence that the Abelson virus protein functions in vivo as a protein kinase which phosphorylates tyrosine. Proc Natl Acad Sci USA 78: 1552–1556

    Google Scholar 

  • Sefton BM, Hunter T, Nigg E, Singer SJ, Walter G (1981c) Cytoskeletal targets for viral transforming proteins with tyrosine protein kinase activity. Cold Spring Harbor Symp Quant Biol 46: 939–951

    Article  CAS  Google Scholar 

  • Sefton BM, Patschinsky T, Berdot C, Hunter T, Elliot T (1982) Phosphorylation and metabolism of the transforming protein of Rous sarcoma virus. J Virol 41: 813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sefton BM, Hunter T, Cooper J A (1983) Some lymphoid cell lines transformed by Abelson murine leukemia virus lack a major 36,000-dalton tyrosine protein kinase substrate. Mol Cell Biol 3: 56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya M, Hanafusa H (1982) Nucleotide sequence of Fujinami sarcoma virus: evolutionary relationship of its transforming gene with transforming genes of other sarcoma viruses. Cell 30: 787–795

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M, Hanafusa T, Hanafusa H, Stephenson JR (1980) Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc Natl Acad Sci USA 77: 6536–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilo B-Z, Weinberg RA (1981) DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaster. Proc Natl Acad Sci USA 78: 6789–6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriver K, Rohrsehneider LR (1981) Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J Cell Biol 89: 525–535

    Article  CAS  PubMed  Google Scholar 

  • Sigel P, Pette D (1969) Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle. J Histochem Cytochem 17: 225–237

    Article  CAS  PubMed  Google Scholar 

  • Singh VN, Singh M, August JT, Horecker BL (1974) Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates. Proc Natl Acad Sci USA 71: 4129–4132

    Google Scholar 

  • Smart JE, Oppermann H, Czernilofsky AP, Purchio AF, Erikson RL, Bishop JM (1981) Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60src) and its normal cellular homologue (pp60c-src). Proc Natl Acad Sci USA 78: 6013–6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder MA, Bishop JM, Colby WW, Levinson AD (1983) Phosphorylation of tyrosine-416 is not required for the transforming properties of and kinase activity of pp60v -src. Cell 32: 891–901

    Article  CAS  PubMed  Google Scholar 

  • Takeya T, Feldman RA, Hanafusa A (1982) DNA sequence of the viral and cellular src gene of chickens. I. Complete nucleotide sequence of an EcoRI fragment of recovered avian sarcoma virus which codes for gp37 and pp60src. J Virol 44: 1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255: 8363–8365

    CAS  PubMed  Google Scholar 

  • Van de Ven WJM, Reynolds FH Jr, Stephenson JR (1980) The nonstructural components of polyproteins encoded by replication-defective mammalian transforming retroviruses are phosphorylated and have associated protein kinase activity. Virology 101: 185–187

    Article  PubMed  Google Scholar 

  • Wang E, Goldberg AR (1976) Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc Natl Acad Sci USA 73: 4065–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JYJ, Queen C, Baltimore D (1982) Expression of an Abelson murine leukemia virus-encoded protein in Escherichia coli causes extensive phosphorylation of tyrosine residues. J Biol Chem 257: 13181–13184

    CAS  PubMed  Google Scholar 

  • Wang L-H, Feldman R, Shibuya M, Hanafusa H, Notter MFP, Balduzzi PC (1981) Genetic structure, transforming sequence and gene product of avian sarcoma virus, UR1. J Virol 40: 258–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. Dickens E (trans). Constable, London

    Google Scholar 

  • Weber MJ (1973) Hexose transport in normal and in Rous sarcoma virus-transformed cells.

    Google Scholar 

  • J Biol Chem 248:2978-2983 Weber MJ, Friis RR (1979) Dissociation of transformation parameters using temperature-conditional mutants of Rous sarcoma virus. Cell 16:25–32

    Google Scholar 

  • Willingham MC, Jay G, Pastan I (1979) Localization of the ASV src gene product to the plasma membrane of transformed cells by immunoelectron microscopy. Cell 18: 125–134

    Article  CAS  PubMed  Google Scholar 

  • Witte ON, Rosenberg N, Baltimore D (1979) A normal cell protein cross-reactive to the major Abelson murine leukemia virus gene product. Nature 281: 396–398

    Article  CAS  PubMed  Google Scholar 

  • Witte ON, Dasgupta A, Baltimore D (1980 a) Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature 283: 826–831

    Google Scholar 

  • Witte ON, Goff S, Rosenberg N, Baltimore D (1980 b) A transformation-defective mutant of Abelson murine leukemia virus lacks protein kinase activity. Proc Natl Acad Sci USA 77: 4993–4997

    Google Scholar 

  • Witte ON, Ponticelli A, Gifford A, Baltimore D, Rosenberg N, Elder J (1981) Phosphorylation of the Abelson murine leukemia virus transforming protein. J Virol 39: 870–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong TW, Goldberg AR (1983) In vitro phosphorylation of angiotensin analogues by tyrosyl protein kinases. J Biol Chem 258: 1022–1025

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Cooper, J.A., Hunter, T. (1983). Regulation of Cell Growth and Transformation by Tyrosine-Specific Protein Kinases: The Search for Important Cellular Substrate Proteins. In: Vogt, P.K., Koprowski, H. (eds) Retroviruses 2. Current Topics in Microbiology and Immunology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69075-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69075-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69077-8

  • Online ISBN: 978-3-642-69075-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics