Skip to main content

Intestinal Permeability Studies in Humans

  • Chapter
Pharmacology of Intestinal Permeation II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 2))

Abstract

The intestinal mucosa separates the intestinal lumen from the interior milieu of the body. Substrate which enters the body has to pass this barrier. Anatomical and functional factors determine the permeability of the mucosa for the various substrates which may be different in site, extent or species. The permeation through the mucosa is achieved by several mechanisms such as active, facilitated or passive transport, persorption or pinocytosis; substances may also move from the blood to the intestinal lumen following physicochemical laws. Details of the processes pertaining to intestinal permeability are mainly derived from animal experiments and can only partially be applied to humans. However, there are several techniques which permit study of human intestinal permeability. These methods and their results will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibi SS, Fogel MR, Agraval RM (1974) Comparison of free amino acid and dipeptide absorption in the jejunum of sprue patients. Gastroenterology 67:586–591

    PubMed  CAS  Google Scholar 

  • Alpers DH, Kinzie JL (1973) Regulation of small intestinal protein metabolism. Gastroenterology 64:471–496

    PubMed  CAS  Google Scholar 

  • Ammann AJ, Hong R (1971) Selective IgA deficiency: presentation of 30 cases and a review of the literature. Medicine 50:223–236

    Article  PubMed  CAS  Google Scholar 

  • Ammon HV, Phillips SF (1973) Inhibition of colonic water and electrolyte absorption by fatty acids in man. Gastroenterology 65:744–749

    PubMed  CAS  Google Scholar 

  • André L, Lambert R, Bazin H, Heremans JF (1974) Interference of oral immunization with the intestinal absorption of heterologues albumin. Eur J Immunol 4:701–705

    Article  PubMed  Google Scholar 

  • Anonymous (1981) Sugering the Grosby capsule. Lancet 1:593–594

    Google Scholar 

  • Archampong EG, Edmonds DJ (1972) Effect of luminal ions on the transepithelial electrical potential difference in human rectum. Gut 13:559–565

    Article  PubMed  CAS  Google Scholar 

  • Barbezat GO (1973) Stimulation of intestinal secretion by polypeptide hormones. Scand J Gastroenterol 8 [Suppl 22]:1–21

    Google Scholar 

  • Barry PH, Diamond JM (1970) Junction potentials, electrode standard potentials and other problems in interpreting electrical properties in membranes. J Membr Biol 3:93–122

    Article  CAS  Google Scholar 

  • Billich CO, Levitan R (1969) Effects of sodium concentration and osmolality on water and electrolyte absorption from intact human colon. J Clin Invest 48:1336–1347

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Hirsch J, Ahrens EH (1955) Transintestinal intubation: technique for measurements of gut length and physiological sampling at known loci. Proc Soc Exp Biol Med 88:356–362

    PubMed  CAS  Google Scholar 

  • Borgström B, Dahlquist A, Lundh G, Sjövall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36:1521–1536

    Article  PubMed  Google Scholar 

  • Brown BH, Holdsworth CD, Levin RJ, Read NW, Smallwood RH (1976) The relationship between intestinal motility and fluctuations in transmural potential difference in the human jejunum. J Physiol (Lond) 259:20P–30P

    Google Scholar 

  • Buckley RH, Dees SC (1969) Correlation of mild precipitins with IgA deficiency. N Engl J Med 281:465–469

    Article  PubMed  CAS  Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977a) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). I. Chemical analysis and biological properties of PEG 400. Gastroenterology 73:241–246

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Phillips SF, Hofmann AF (1977b) Measurements of intestinal permeability using low molecular weigth polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  • Cobden I, Rothwell J, Axon ATR (1980) Intestinal permeability and screening tests for coeliac disease. Gut 21:512–518

    Article  PubMed  CAS  Google Scholar 

  • Cobden I, Dickinson RF, Rothwell J, Axon ATR (1978) Intestinal permeability assessed by excretion ratios of two molecules: results in coeliac disease. Br Med J 2:1060

    Article  PubMed  CAS  Google Scholar 

  • Cooper H, Levitan R, Fordtran JS, Ingelfinger JF (1966) A method for studying absorption of water and solute from human small intestine. Gastroenterology 50:1–7

    PubMed  CAS  Google Scholar 

  • Cooperstein JL, Brockman SK (1959) The electrical potential difference generated by the large intestine: its relation to electrolyte and water transfer. J Clin Invest 38:435–442

    Article  PubMed  CAS  Google Scholar 

  • Dainty J, House CR (1966) “Unstirred layer” in frog skin. J Physiol (Lond) 182:66–78

    CAS  Google Scholar 

  • Dalmark M (1970) The transmucosal electrical potential difference across the human rectum in vivo following perfusion of different electrolyte solutions. Scand J Gastroenterol 5:421–426

    PubMed  CAS  Google Scholar 

  • Davis GR, Santa Ana CA, Morawski SG, Fordtran JS (1980) Inhibition of water and electrolyte absorption by polyethylene glycol (PEG). Gastroenterology 79:35–39

    PubMed  CAS  Google Scholar 

  • Devroede GJ, Phillips SF (1969) Studies of the perfusion technique for colonic absorption. Gastroenterology 56:92–100

    PubMed  CAS  Google Scholar 

  • Diamond JM (1966) A rapid method for determining voltage-concentration relations across membranes. J Physiol (Lond) 183:83–100

    CAS  Google Scholar 

  • Dietschy JM, Sallee VL, Wilson FA (1971) Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology 61:932–934

    PubMed  CAS  Google Scholar 

  • Donaldson RM, Barreras RF (1965) Intestinal absorption of trace quantities of chromium. J Lab Clin Med 66:866–867

    Google Scholar 

  • Doscherholmen A, Hagen PS, Liu M, Olin L (1959) Delay of absorption of radiolabeled cyanocobalamin in the intestinal wall in the presence of intrinsic factor. J Lab Clin Med 54:434–439

    PubMed  CAS  Google Scholar 

  • Drillet F, Rey F, Rey J (1971) Influence of the flow rate of perfusion on the in vivo kinetics of glucose and amino acid absorption. Acta Paediatr Scand 60:371

    PubMed  CAS  Google Scholar 

  • Edmonds CJ (1970) Electrical potentials of the sigmoid colon and rectum in irritable bowel syndrom and ulcerative colitis. Gut 11:867–874

    Article  PubMed  CAS  Google Scholar 

  • Edmonds CJ, Pilcher D (1973) Electrical potential difference of sodium and potassium flux across rectal mucosa in ulcerative colitis. Gut 784–789

    Google Scholar 

  • Ewe K (1972a) Calcium transport in rat small intestine in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol 273:352–365

    Article  PubMed  CAS  Google Scholar 

  • Ewe K (1972b) Calcium absorption in health and disease. In: Frick P et al. (eds) Ergebnisse der inneren Medizin und Kinderheilkunde, vol 33. Springer, Berlin Heidelberg New York, pp 231–269

    Google Scholar 

  • Ewe K (1974) Die intestinale Calcium-Resorption und ihre Störungen. I.Physiologie der intestinalen Calcium-Resorption. Klin Wochenschr 52:57–63

    Article  PubMed  CAS  Google Scholar 

  • Ewe K (1975) Der Einfluß von Hormonen auf intestinale Transfervorgänge von Wasser und Elektrolyten. Arzneim Forsch 25:499–506

    CAS  Google Scholar 

  • Ewe K (1976) Resorptionsprüfungen. In: Forell MM (ed) Verdauungsorgane. Springer, Berlin Heidelberg New York (Handbuch der inneren Medizin, vol 3/6)

    Google Scholar 

  • Ewe K (1977) Influence of diphenolic laxatives on water and electrolyte permeation in man. In: Kramer M, Lauterbach F (eds) Intestinal permeation, IGS 391. Excerpta Medica, pp 420–425

    Google Scholar 

  • Ewe K (1980) Effect of rhein on the transport of electrolyte, water and carbohydrates in the human jejunum and colon. Pharmacology 20 [Suppl 1]:27–35

    Article  PubMed  CAS  Google Scholar 

  • Ewe K, Hölker B (1974) Einfluß eines diphenolischen Laxans (Bisacodyl) auf den Wasser- und Elektrolyttransport im menschlichen Colon. Klin Wochenschr 52:827–833

    Article  PubMed  CAS  Google Scholar 

  • Ewe K, Summerskill WHJ (1965) Transfer of ammonia in the human jejunum. J Lab Clin Med 65:839–847

    PubMed  CAS  Google Scholar 

  • Ewe K, Wanitschke R (1980) The effect of cathartic agents on transmucosal electrical potential difference in the human rectum. Klin Wochenschr 58:299–306

    Article  PubMed  CAS  Google Scholar 

  • Ewe K, Romahn A, Oberhausen EA (1971) Vitamin B 12-Resorption und ihre Beeinflussung durch Intrinsic Factor bei Normalen und Ileumresezierten. In: Amon R, Ritter U (eds) Aktuelle Berichte aus dem Gebiet der Verdauungs- und Stoffwechselkrankheiten. Thieme, Stuttgart, pp 210–213

    Google Scholar 

  • Fisher RB, Parsons DS (1950) The gradient of mucosal surface area in the small intestine of the rat. J Anat 84:272–282

    PubMed  CAS  Google Scholar 

  • Fisher RB, Parsons DS (1953) Glucose movements across the wall of the rat small intestine. J Physiol (Lond) 119:210–223

    CAS  Google Scholar 

  • Fordtran JS (1966) Marker perfusion techniques for measuring intestinal absorption in man. Gastroenterology 51:1089–1093

    PubMed  CAS  Google Scholar 

  • Fordtran JS (1969) Segmental perfusion techniques. Gastroenterology 56:987–988

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Dietschy JM (1966) Water and electrolyte movement in the intestine. Gastroenterology 50:263–285

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Ingelfinger FJ (1968) Absorption of water, electrolyte, and sugars from the human gut. In: Code CF (ed) Alimentary canal. Am Physiol Soc, Washington, pp 1457–1490 (Handbook of physiology, vol 3/6)

    Google Scholar 

  • Fordtran JS, Locklear TW (1966) Ionic constituents and osmolality of gastric and small intestinal fluids after eating. Am J Dig Dis 11:503–521

    Article  PubMed  CAS  Google Scholar 

  • Fordtran JS, Levitan R, Bikerman V, Burrows BA (1961) The kinetics of water absorption in the human intestine. Trans Assoc Am Physicians 74:195–205

    PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC, Carter NW (1968) The mechanisms of sodium absorption in the human intestine. J Clin Invest 47:885–900

    Article  Google Scholar 

  • Fordtran JS, Soergel KH, Ingelfinger FJ (1962) Intestinal absorption of D-Xylose in man. N Engl J Med 267:274–279

    Article  PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC, Locklear TW, Ewton MF (1967) Water and solute movement in the small intestine of patients with sprue. J Clin Invest 46:287–298

    Article  PubMed  CAS  Google Scholar 

  • Fordtran JS, Rector FC, Ewton MF, Soter N, Kinney J (1965) Permeability characteristics of the human small intestine. J Clin Invest 44:1935–1944

    Article  PubMed  CAS  Google Scholar 

  • Forth W, Rummel W (1975) Pharmacology of intestinal absorption. In: Forth W, Rummel W (eds) Gastrointestinal absorption of drugs, vol 1. Pergamon, Oxford (International encyclopedia of pharmacology and therapeutics)

    Google Scholar 

  • Fowler D, Cooke WT (1969) Diagnostic significance of D-Xylose excretion test. Gut 1:67–70

    Article  Google Scholar 

  • Franks JJ, Mosser EL, Austadt GL (1963) The role of the gut in the albumin catabolism. I. Studies in jejunoilectomized rabbits. J Gen Physiol 46:415

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Schultz SG (1972) Ionic conductance of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol 59:318–346

    Article  PubMed  CAS  Google Scholar 

  • Geall MG, Code CF, McIlrath DC, Summerskill WHJ (1970) Measurement of gastrointestinal transmural electrical potential difference in man. Gut 11:34–37

    Article  PubMed  CAS  Google Scholar 

  • Gerson CD, Cohen N, Janowitz HD (1973) Small intestinal absorptive function in regional enteritis. Gastroenterology 64:907–912

    PubMed  CAS  Google Scholar 

  • Gerson CD, Cohen N, Brown N, Lindenbaum J, Hepner GW, Janowitz HD (1974) Folic acid and hexose absorption in sprue. Am J Dig Dis 19:911–919

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt S, Dayton AB (1919) Studies in the mechanism of absorption from the intestine. I. The colon. A contribution to the one-sided permeability of the intestinal wall to chloride. Am J Physiol 48:419

    CAS  Google Scholar 

  • Goldstein F, Karacoday S, Wirts CW, Kowlessar OD (1970) Intraluminal small-intestinal utilization of D-Xylose by bacteria. Gastroenterology 59:380–386

    PubMed  CAS  Google Scholar 

  • Gordon RS (1959) Exsudative enteropathy. Abnormal permeability of the gastrointestinal tract demonstrable with labelled polyvinyl pyrrolidone. Lancet 1:325–326

    Article  PubMed  Google Scholar 

  • Gordon RS, Gardner JD, Kinzie JL (1972) Low mannitol clearance into cholera stool as evidence against filtration as the source of stool fluid. Gastroenterology 63:407–412

    PubMed  Google Scholar 

  • Gray TK, Braman P, Juan D, Morawski G, Fordtran JS (1976) Ion transport changes during calcitonin-induced intestinal secretion in man. Gastroenterology 71:392–398

    PubMed  CAS  Google Scholar 

  • Grusky FL, Cooke RE (1955) The gastrointestinal absorption of unaltered protein in normal infants and in infants recovering from diarrhea. Pediatrics 16:763–768

    Google Scholar 

  • Gustke RF, McCormick PG, Ruppin H, Soergel KH, Whalen GE, Wood CM (1981) Human intestinal potential difference: recording method and biophysical implications. J Physiol (Lond) 321:571–582

    CAS  Google Scholar 

  • Harris J, Shields R (1970) Absorption and secretion of water and electrolytes by the intact human colon in diffuse untreated proctocolitis. Gut 11:27–33

    Article  PubMed  CAS  Google Scholar 

  • Heinrich HC, Gabbe EE, Brüggemann J, Icagic F, Classen M (1979) Enteropancratic circulation in man. Klin Wochenschr 67:1295–1297

    Article  Google Scholar 

  • Herbst G (1844) Das Lymphgefäßsystem und seine Verrichtung. Vandenhoeck, Göttingen

    Google Scholar 

  • Holdworth CD, Dawson AM (1964) The absorption of monosaccharides in man. Clin Sci 27:371–379

    Google Scholar 

  • Holdworth CD, Dawson AM (1965) Glucose and fructose absorption in idiopathic steatorrhea. Gut 6:387–391

    Article  Google Scholar 

  • Hoyumpa AM, Nichols S, Schenker S, Wilson FA (1976) Thiamine transport in thiamine-deficient rats; role of the unstirred water layer. Biochim Biophys Acta 436:438–447

    Article  PubMed  CAS  Google Scholar 

  • Hyden S (1955) A turbidimetric method for determination of higher polyethylene glycols in biological material. Ann Agr Coll 22:139–145

    Google Scholar 

  • Iyengar L, Selvaraj RJ (1972) Intestinal absorption of immunoglobulins by newborn infants. Arch Dis Child 47:411–414

    Article  PubMed  CAS  Google Scholar 

  • Jackson PG, Lessof MH, Baker RWR, Ferrett J, McDonald DM (1981) Intestinal permeability in patients with eczema and food allergy. Lancet 1:1285–1286

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ED, Brody DC, Broitman SA, Fordtran JS (1963) Validity of polyethylene glycol in estimating intestinal water volume. Gastroenterology 44:761–767

    PubMed  CAS  Google Scholar 

  • Jarnum S (1962) Protein-losing gastroenteropathy. Blackwell, Oxford

    Google Scholar 

  • Jarnum S, Westergaard H, Yssing M, Jensen H (1968) Quantitation of gastrointestinal protein loss by means of Fe59-labelled iron dextran. Gastroenterology 55:229–241

    PubMed  CAS  Google Scholar 

  • Jeejeehoy KN, Singh B, Mani RS, Sanjawa SM (1965) The use of 95Nb-labelled albumin in the study of gastrointestinal protein loss. In: Birke G et al. (eds) Physiology and pathophysiology in plasma protein metabolism. Huber, Bern, pp 61–67

    Google Scholar 

  • Jeffries GH (1978) Protein metabolism and protein losing enteropathy. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal disease, 2nd edn. Saunders, Philadelphia, pp 354–367

    Google Scholar 

  • Kendall MJ (1970) The influence of age on the xylose absorption test. Gut 11:498–501

    Article  PubMed  CAS  Google Scholar 

  • Kingham JGC, Loehry CA (1978) Selectivity of small intestinal exudate in celiac disease and Crohn’s disease. Dig Dis Sci 23:33–38

    Article  CAS  Google Scholar 

  • Korenblat RE, Rothberg RM, Minden P, Farr RS (1968) Immune response of human adults after oral and parenteral exposure to bovine serum albumin. J Allergy Clin Immunol 41:226–235

    CAS  Google Scholar 

  • Krag B, Krag E (1976) Regional ileitis (Crohn’s disease). II. Electrolyte and water movement in the ileum during perfusion with bile acids. Scand J Gastroenterol 11:487–490

    PubMed  CAS  Google Scholar 

  • Krag E, Krag B (1976) Regional ileitis (Crohn’s disease). I. Kinetic of bile acid absorption in the perfused ileum. Scand J Gastroenterol 11:481–486

    PubMed  CAS  Google Scholar 

  • Krag E, Krag B, Lenz K (1975) A comparison of stable and H-labelled polyethylene glycol 4,000 as non absorbable water phase markers in the human ileum and faeces. Scand J Gastroenterol 10:105–108

    PubMed  CAS  Google Scholar 

  • Krawitt EL, Beeken WK (1975) Limitations of the usefulness of the D-Xylose absorption test. Am J Clin Pathol 63:261–263

    PubMed  CAS  Google Scholar 

  • Krejs GJ, Fordtran JS (1980) Effect of VIP infusion on water and ion transport in the human jejunum. Gastroenterology 78:722–727

    PubMed  CAS  Google Scholar 

  • Krejs GJ, Browne R, Raskin P (1980) Effect of intravenous somatostatin on jejunal absorption of glucose, amino acids and electrolytes: Gastroenterology 78:26–31

    PubMed  CAS  Google Scholar 

  • Leissring JC, Anderson JW, Smith DW (1962) Uptake of antibodies by the intestine of the newborne infant. Am J Dis Child 103:160–165

    PubMed  CAS  Google Scholar 

  • Levitan R, Brudno S (1967) Permeability of the rectosigmoid mucosa to tritiated water in normal subjects and in patients with mild idiopathic ulcerative colitis. Gut 8:15–18

    Article  PubMed  CAS  Google Scholar 

  • Levitan R, Fordtran JS, Burrows BA, Ingelfmger FK (1962) Water and salt absorption in the human colon. J Clin Invest 41:1754–1759

    Article  PubMed  CAS  Google Scholar 

  • Levitt MD (1977) Use of the constant perfusion technique in the nonsteady state. Gastroenterology 73:1450–1454

    PubMed  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Loehry CA, Kingham J, Baker J (1973) Small intestinal permeability in animals and man. Gut 14:683–688

    Article  PubMed  CAS  Google Scholar 

  • Love AHG (1968) Absorption characteristics of the human small intestine during segmental perfusion. J Physiol (Lond) 197:38P–39P

    CAS  Google Scholar 

  • Mekhjian H, Phillips SF, Hofmann AF (1971) Colonic secretion of water and electrolyte induced by bile acids: perfusion studies in man. J Clin Invest 50:1569–1577

    Article  CAS  Google Scholar 

  • Menzies IS (1974) Absorption of intact oligosaccharide in health and disease. Biochem Soc Trans 2:1042–1047

    CAS  Google Scholar 

  • Menzies IS, Pounder R, Sukha H, Laker MF, Bull J, Wheeler PG, Creamer B (1979) Abnormal intestinal permeability to sugars in villous atrophy. Lancet 2:1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Modigliani R, Bernier JJ (1971) Absorption of glucose, sodium, and water by the human jejunum studied by intestinal perfusion with a proximal occluding balloon and at variable flow rates. Gut 12:184–193

    Article  PubMed  CAS  Google Scholar 

  • Modigliani R, Rambaud JC, Bernier JJ (1973) The method of intraluminal perfusion of the human small intestine I: principle and technique. Digestion 9:176–192

    Article  PubMed  CAS  Google Scholar 

  • Modigliani R, Ramboud JC, Bernier JJ (1978) Validation of the use of a tube with a proximal occlusive balloon for measurement of intestinal absorption in man. Dig Dis Sci 23:720–722

    Article  CAS  Google Scholar 

  • Morris IG (1968) Gamma globulin absorption in the newborn. In: Code CF (ed) Alimentary canal. Am Physiol Soc, Washington, pp 1491–1512 (Handbook of physiology, vol 3/6)

    Google Scholar 

  • Nordbring F (1957) The failure of newborn premature infants to absorb antibodies from heterologous colostrum. Acta Paediatr Stockholm 46:569–578

    Article  CAS  Google Scholar 

  • Ogra PL, Karzon DT (1970) The role of immunoglobulins in the mechanism of mucosal immunity to virus infection. Pediatr Clin North Am 17:385–400

    PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion, and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167:13–46

    PubMed  CAS  Google Scholar 

  • Perlmann P, Hammerstrom S, Lagercrantz R, Gustafsson B (1967) Antibodies to colon in rats and human ulcerative colitis. Cross reactivity with Escherichia Coli 0:14 antigen. Proc Soc Exp Biol Med 125:975–982

    PubMed  CAS  Google Scholar 

  • Phillips SF, Summerskill WHJ (1966) Occlusion of the jejunum for intestinal perfusion in man. Mayo Clin Proc 41:224–231

    PubMed  CAS  Google Scholar 

  • Poitros P, Modigliani R, Bernier JJ (1980) Effect of combination of gastrin, secretin, cholecystokinin, glucagon, and gastric inhibitory polypeptide on jejunal absorption in man. Gut 21:299–304

    Article  Google Scholar 

  • Rask-Madsen J (1973a) Sieving characteristics of inflamed rectal mucosa. Gut 14:988–989

    Article  PubMed  CAS  Google Scholar 

  • Rask-Madsen J (1973b) Simultanous measurement of electrical polarization and electrolyte transport by the entire normal and inflamed human colon during in vivo perfusion. Scand J Gastroenterol 8:327–336

    PubMed  CAS  Google Scholar 

  • Rask-Madsen J, Brix-Jensen P (1973) Electrolyte transport capacity and electrical potentials of the normal and inflamed human rectum in vivo. Scand J Gastroenterol 8:169–175

    PubMed  CAS  Google Scholar 

  • Rask-Madsen J, Dalmark M (1973) Decreased transmural potential difference across the human rectum in ulcerative colitis. Scand J Gastroenterol 8:321–326

    PubMed  CAS  Google Scholar 

  • Rask-Madsen J, Hammergaard EA, Knudsen E (1973) Rectal electrolyte transport and mucosal permeability in ulcerative colitis and Crohn’s disease. J Lab Clin Med 81:342–353

    PubMed  CAS  Google Scholar 

  • Read NW, Fordtran JS (1978) The role of intraluminal junction potential on the generation of gastric potential difference in man. Gastroenterology 76:932–938

    Google Scholar 

  • Read NW, Holdworth CD, Levin RJ (1974) Electrical measurement of intestinal absorption of glucose in man. Lancet 2:624–627

    Article  PubMed  CAS  Google Scholar 

  • Read NW, Levin RJ, Holdsworth CD (1976) Electrogenic glucose absorption in untreated and treated coeliac disease. Gut 17:444–449

    Article  PubMed  CAS  Google Scholar 

  • Read NW, Barber DC, Levin RJ, Holdsworth CD (1977) Unstirred layer and kinetic of electrogenic glucose absorption in the human jejunum in situ. Gut 18:865–876

    Article  PubMed  CAS  Google Scholar 

  • Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    PubMed  CAS  Google Scholar 

  • Rey F, Drillet F, Schmitz J, Rey J (1974) Influence of flow rate on the kinetics of the intestinal absorption of glucose and lysine in children. Gastroenterology 66:79–85

    PubMed  CAS  Google Scholar 

  • Rothberg RM (1969) Immunoglobulin and specific antibody synthesis during the first weeks of life in premature infants. J Pediatr 75:391–399

    Article  PubMed  CAS  Google Scholar 

  • Ruddell WSJ, Blendis LM, Lovell D (1977) Rectal potential difference and histology in Crohn’s disease. Gut 18:284–289

    Article  PubMed  CAS  Google Scholar 

  • Ruppin H, Bar-Meier S, Soergel KH, Wood CM (1981) Effects of liquid formular diets on proximal gastrointestinal function. Dig Dis Sci 26:202–207

    Article  PubMed  CAS  Google Scholar 

  • Sallee VL, Dietschy JM (1973) Determinants of intestinal mucosal uptake of short and medium chain fatty acids and alcohols. J Lipid Res 14:475–484

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1961a) Kinetics of intestinal absorption in man: normal subjects and patients with sprue. J Clin Invest 40:1069

    Google Scholar 

  • Schedl HP, Clifton JA (1961b) Small intestinal absorption of steroids. Gastroenterology 41:491–499

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1962) Polyvinylpyrrolidone I131 as an indicator of net intestinal water flux: its binding by intestinal mucus. Proc Soc Exp Biol Med 110:381–384

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1963) Cortisol absorption in man. Gastroenterology 44:134–145

    PubMed  CAS  Google Scholar 

  • Schedl HP, Miller DM, White D (1966) Use of polyethylene glycol and phenol red as unabsorbed indicators for intestinal absorption studies in man. Gut 7:159–163

    Article  PubMed  CAS  Google Scholar 

  • Schmid WC, Phillips SF, Summerskill WHJ (1969) Jejunal secretion of electrolytes and water in nontropical sprue. J Lab Clin Med 73:772–783

    PubMed  CAS  Google Scholar 

  • Schultz SG (1977) Some properties and consequences of low resistance paracellular pathway across the small intestine: the advantage of being “leaky”. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 382–391

    Google Scholar 

  • Seifert J (1976) Enterale Resorption großmolekularer Proteine bei Tieren und Menschen. Z Ernährungswiss [Suppl] 18:1–72

    CAS  Google Scholar 

  • Sewell P, Cooke WT, Cox EV, Meynell MJ (1963) Milk intolerance in gastrointestinal disorders. Lancet 2:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Shorter RG, Huizenga KA, Spencer RJ (1972) A working hypothesis for the etiology and pathogenesis of nonspecific inflammatory bowel disease. Dig Dis Sci 17:1024–1031

    Article  CAS  Google Scholar 

  • Siber GR, Mayer RJ, Levin MJ (1980) Increased gastrointestinal absorption of large molecules in patients after 5-flurouracil therapy for metastatic colon carcinoma. Cancer Res 40:3430–3436

    PubMed  CAS  Google Scholar 

  • Silk DB, Kumar PJ, Perrett D, Clark ML, Dawson AM (1974a) Amino acid and peptide absorption in patients with coeliac disease and dermatitis herpetiformis. Gut 15:1–8

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA, Kumar PJ, Webb JPW, Lane AE, Clark ML, Dawson AM (1974b) Ileal function in patients with untreated adult coeliac disease. Gut 16:261–267

    Article  Google Scholar 

  • Sladen GE (1968) Perfusion studies in relation to intestinal absorption. Gut 9:624–628

    Article  PubMed  CAS  Google Scholar 

  • Sladen GE, Dawson AM (1969) Effects of flow rate on the absorption of glucose in a steady state perfusion system in man. Clin Sci 36:133–145

    PubMed  CAS  Google Scholar 

  • Sladen GE, Kumar PJ (1973) Is the xylose test still a worthwhile investigation? Br Med J 3:223–226

    Article  PubMed  CAS  Google Scholar 

  • Soergel KH (1971) Intestinal perfusion studies: values, pitfalls, and limitations. Gastroenterology 61:261–263

    PubMed  CAS  Google Scholar 

  • Soergel KH, Whalen GE, Harris JA (1968) Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol 24:40–48

    PubMed  CAS  Google Scholar 

  • Solomon AK (1960) Measurement of the equivalent pore radius in cell membranes. In: Kleinzeller A, Kotyk A (eds) Membrane transport and metabolism. Academic, New York, p 94

    Google Scholar 

  • Staverman AJ (1951) The theory of measurement of osmotic pressure. Rec Trav Chim 70:344–352

    Article  CAS  Google Scholar 

  • Stewart JS, Pollock DA, Hoffbrand AV, Mollin DL, Booth CC (1967) A study of proximal and distal intestinal structure and absorptive function in idiopathic steatorrhoea. Q J Med 36:425–444

    PubMed  CAS  Google Scholar 

  • Strober W, Wochner RD, Carbone PP, Waldmann TA (1967) Intestinal lymphangiectasia: a proteinlosing enteropathy with hypogammaglobulinemia, lymphopenia and impaired homograft rejection. J Clin Invest 46:1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Sundquist T, Magnusson K-E, Sjödahl R, Stjernström I, Tageson C (1980) Passage of molecules through the wall of the gastrointestinal tract. Gut 21:208–214

    Article  Google Scholar 

  • Tomasi TB, Tan EM, Solomon A, Pendergast RA (1965) Characteristics of on immune system common to certain external secretions. J Exp Med 121:101–124

    Article  PubMed  CAS  Google Scholar 

  • Thomson ABR, Dietschy JM (1977) Deviation of the equations that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol 64:277–294

    Article  PubMed  CAS  Google Scholar 

  • Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS (1970) Interrelationship of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Invest 49:557–567

    Article  PubMed  CAS  Google Scholar 

  • Volkheimer G (1964) Durchlässigkeit der Darmschleimhaut für groß-korpuskuläre Elemente (Herbst-Effekt). Z Gastroenterol 2:57

    Google Scholar 

  • Volkheimer G (1977) Persorption of particels: Physiology and pharmacology. Adv Pharmacol Chemother 14:163–167

    Article  PubMed  CAS  Google Scholar 

  • Waldmann TA (1961) Gastrointestinal protein loss demonstrated by 51Cr-labelled albumin. Lancet 2:121–123

    Article  PubMed  CAS  Google Scholar 

  • Waldmann TA, Morell GA, Wochner RD, Strober W, Sternlieb I (1967) Measurement of gastrointestinal protein loss using ceruloplasmin labelled with 67copper. J Clin Invest 46:10–20

    Article  PubMed  CAS  Google Scholar 

  • Walker WA, Isselbacher KJ (1974) Uptake and transport of macromolecules by the intestine: possible role in clinical disorders. Gastroenterology 67:531–550

    PubMed  CAS  Google Scholar 

  • Walzer M (1927) Studies in absorption of undigested protein in human beings. I. A simple direct method of studying the absorption of undigested proteins. J Immunol 14:143–149

    Google Scholar 

  • Wanitschke R, Ewe K (1983) Drugs and the colon. In: Bustos-Fernándes L (ed) Colon-structure and function. Plenum, New York, pp 275–292

    Google Scholar 

  • Wasserman RH, Taylor AU (1969) Some aspects of the intestinal absorption of calcium with special reference to vitamin D. In: Comar CL, Bronner F (eds) Mineral metabolism. III. Calciumphysiology. Academic, New York, pp 321–403

    Google Scholar 

  • Wensel RH, Rich C, Brown AC, Volwiler W (1969) Absorption of calcium measured by intubation and perfusion of the intact human small inestine. J Clin Invest 48:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Westergaard H, Dietschy JM (1974) Delineation of dimensions and permeability characteristics of two major diffusion barriers to passive mucosal uptake in rabbit intestine. J Clin Invest 54:718–732

    Article  PubMed  CAS  Google Scholar 

  • Wetterforss J, Gullberg R, Liljedahl S-O, Plantin L-O, Birke G, Olhagen B (1960) Role of stomach and small intestine in albumin breakdown. Acta Med Scand 168:347–362

    Article  Google Scholar 

  • Whalen GE, Harris JA, Geenen JE, Soergel KH (1966) Sodium and water absorption from human small intestine. The accuracy of the perfusion method. Gastroenterology 51:975–984

    PubMed  CAS  Google Scholar 

  • Wheeler PG, Menzies IS, Creamer B (1978) Effect of hyperosmolar stimuli and coeliac disease on the permeability of the human gastrointestinal tract. Clin Sci Mol Med 54:495–501

    PubMed  CAS  Google Scholar 

  • Wiggins HS, Dawson AM (1961) An evaluation of unabsorbable marker in the study of fat absorption. Gut 2:373–376

    Article  PubMed  CAS  Google Scholar 

  • Williams RC, Gibbons RJ (1972) Inhibition of bacterial adherence by secretory immunoglobulin A; a mechanism of antigen disposal. Science 177:697–699

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Dietschy JM (1974) The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta 363:112–126

    Article  PubMed  CAS  Google Scholar 

  • Wilson TH (1962) Intestinal absorption. Saunders, Philadelphia, p 10

    Google Scholar 

  • Wingate DL, Hayward MG, Johnson CM, Marczewski AG, Petty RG, Wilson EJ (1973a) Physiological changes in human transjejunal potential difference. Scand J Gastroenterol 8:473–489

    PubMed  CAS  Google Scholar 

  • Wingate DL, Phillips SF, Hofmann AF (1973b) Effect of glycine-conjugated bile acids with and without lecithin on water and glucose absorption in perfused human jejunum. J Clin Invest 52:1230–1236

    Article  PubMed  CAS  Google Scholar 

  • Wingate DL, Sandberg RJ, Phillips SF (1972) A comparison of stable and 14C-labelled polyethylene glycol as volume indicator in the human jejunum. Gut 13:812–815

    Article  PubMed  CAS  Google Scholar 

  • Witts LJ (1961) Some aspects of the pathology of anaemia. II. Investigation of Castle’s hypothesis. Br Med J 404–410

    Google Scholar 

  • Worning H, Amdrup E (1965) Experimental studies on the value of the reference substances polyethylenglycol, bromsulphthalein and 51Cr as indicators of the fluid content in the intestinal lumen. Gut 6:487–493

    Article  PubMed  CAS  Google Scholar 

  • Wright EM, Diamond JM (1968) Effects of pH and polyvalent cations on the selective permeability of gallbladder epithelium to monovalent ions. Biochim Biophys Acta 163:57

    Article  PubMed  CAS  Google Scholar 

  • Young TK, Lee SL, Tai LN (1980) Mannitol absorption and excretion in uremic patients regularly treated with gastrointestinal perfusion. Nephron 25:112–116

    Article  PubMed  CAS  Google Scholar 

  • Zornitzer AE, Bronner F (1971) In situ studies of calcium absorption in rats. Am J Physiol 220:1261–1266

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ewe, K., Wanitschke, R., Staritz, M. (1984). Intestinal Permeability Studies in Humans. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation II. Handbook of Experimental Pharmacology, vol 70 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69508-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69508-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69510-0

  • Online ISBN: 978-3-642-69508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics