Skip to main content

Linkshelikale Z-DNA: “DNA-Supercoiling” und Bindung von Anti-Z-DNA Antikörpern

  • Chapter
Molekular- und Zellbiologie
  • 92 Accesses

Zusammenfassung

DNA, der universelle Träger genetischer Information, konnte durch Erkenntnisse der letzten Jahre als ein Molekül charakterisiert werden, das strukturell in verschiedenen polymorphen Formen existiert. Die Aufgabe dieses Artikels soll deshalb sein, eine Beschreibung des DNA Moleküles unter Berücksichtigung dessen struktureller Flexibilität zu geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Azorin F, Nordheim A, Rich A (1983) Formation of Z-DNA in negatively su-percoiled plasmids is sensitive to small changes in salt concentration within the physiological range. EMBO J 2:649–566

    PubMed  CAS  Google Scholar 

  • Barton JK, Basile LA, Danishefsky A, Alexandrescu A (1984) Chiral probes for the handedness of DNA helices: Enantiomers of tris (4, 7-diphenyl phenanthroline) ruthenium (II). Proc Natl Acad Sci USA 81:1961–1965

    Article  PubMed  CAS  Google Scholar 

  • Bauer W, Crick FHC, White JH (1980) Supercoiled DNA. Sci Am 243:118

    CAS  Google Scholar 

  • Cantor CR (1981) DNA choreography. Cell 25:293–295

    Article  PubMed  CAS  Google Scholar 

  • Cantor C, Schimmel P (1980) Biophysical chemistry, Bd. I, II, III

    Google Scholar 

  • Di Capua E, Stasiak A, Koller T, Brahms S, Thomae R, Pohl FM (1983) Torsional stress induces left-handed helical stretches in DNA of natural base sequence: circular dichroism and antibodv binding. EMBO J 2:1531–1535

    PubMed  Google Scholar 

  • Drew HR, Takano T, Tanaka S, Itakura K, Dickerson RE (1980) High salt d(CpGpCpG), a left-handed Z-DNA double helix. Nature 286:567–573

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Travers AA (1984) DNA structural variations in the E. coli tyr T promoter. Cell 37:491–502

    Article  PubMed  CAS  Google Scholar 

  • Frederick CA et al. (1984) Kinked DNA in crystalline complex with EcoRI endonuclease. Nature 309:327–331

    Article  PubMed  CAS  Google Scholar 

  • Haniford DB, Pulleyblank DE (1983) Facile transition of poly (d(TG).d (CA)) into a left-handed helix in physiological conditions. Nature 302:632–634

    Article  PubMed  CAS  Google Scholar 

  • Jovin TM, McIntosh LP, Arndt-Jovin DJ, Zarling DA, Robert-Nicoud M, van de Sande JH, Jorgenson KF (1983) Left-handed DNA;from synthetic polymers to chromosomes. J Biomol Str Dyn 1:21–57

    CAS  Google Scholar 

  • Keller W (1975) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci USA 72:4876–4880

    Article  PubMed  CAS  Google Scholar 

  • Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD (1981) Left-handed DNA in restriction fragments and a recombinant plasmid. Nature 290:672–677

    Article  PubMed  CAS  Google Scholar 

  • Lafer EM, Möller A, Nordheim A, Stollar BD, Rich A (1981) Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci USA 78:3546–3550

    Article  PubMed  CAS  Google Scholar 

  • Malfoy B, Leng M (1981) Antiserum to Z-DNA. FEBS Lett 132:45–48

    Article  PubMed  CAS  Google Scholar 

  • Möller A, Gabriels JE, Lafer EM, Nordheim A, Rich A, Stollar BD (1982) Monoclonal antibodies recognize different parts of Z-DNA. J Biol Chem 257:12081–12085

    PubMed  Google Scholar 

  • Nordheim A, Rich A (1983a) The sequence (dC-dA)n·(dC-dT)n forms lefthanded Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci USA 80:1821–1825

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Rich A (1982b) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674–679

    Article  Google Scholar 

  • Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982) Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31:309–318

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Peck LJ, Lafer EM, Stollar BD, Wang JC, Rich A (1983) Supercoiling and left-handed Z-DNA. Cold Spring Harbor Symp Quant Biol 47:93–100

    PubMed  Google Scholar 

  • Patel DJ, Cannul LL, Pohl FM (1979) “Alternating B-DNA” conformation for the oligo(dG-dC) duplex in high-salt solution. Proc Natl Acad Sci USA 76:2508–2511

    Article  PubMed  CAS  Google Scholar 

  • Patel DJ, Kozlowski SA, Nordheim A, Rich A (1982) Right-handed and left-handed DNA: Studies of B-and Z-DNA by using proton nuclear Over-hauser effect and pNMR. Proc Natl Acad Sci USA 79:1413–1417

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Wang JC (1983) Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci USA 80:6206–6210

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned p(pCpG)n · d(pCpG)n DNA sequences from right-to left-handed helical structure by salt, co (III), or negative supercoiling. Proc Natl Acad Sci USA 79:4560–4564

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM, Jovin TM (1972) Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC). J Mol Biol 67:375–396

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM, Ranade A, Stockburger M (1973) Laser Raman scattering of two double-helical forms of poly(dG-dC). Biochim Biophys Acta 335:85–92

    Google Scholar 

  • Pulleyblank DE, Shure M, Tang D, Vinograd J, Vosberg H-P (1975) Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: Formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci USA 72:4280–4284

    Article  PubMed  CAS  Google Scholar 

  • Rich A (1983) Right-handed and left-handed DNA: Conformation information in genetic material. Cold Spring Harbor Symp Quant Biol 47:1–12

    PubMed  Google Scholar 

  • Rich A, Nordheim A, Wang AH-J (1984) The chemistry and biology of left-handed Z-DNA. Ann Rev Biochem (in press)

    Google Scholar 

  • Singleton CK, Klysik J, Stirdivant SM, Wells RD (1982) Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299:312–316

    Article  PubMed  CAS  Google Scholar 

  • Thamann TJ, Lord RC, Wang AH-J, Rich A (1981) The high-salt form of poly(dG-dC)·poly(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions. Nucl Acids Res 9:5443–5457

    Article  PubMed  CAS  Google Scholar 

  • Thomae R, Beck S, Pohl FM (1983) Isolation of Z-DNA-containing plasmids. Proc Natl Acad Sci USA 80:550–553

    Article  Google Scholar 

  • Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic reoslution. Nature 282:680–686

    Article  PubMed  CAS  Google Scholar 

  • Wang AH-J, Quigley GJ, Kolpak FJ, van der Marel G, van Boom JH, Rich A (1981) Left-handed double helical DNA: variations in the backbone conformation. Science 211:171–176

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1980) Superhelical DNA. Trends in Biochem Sci 5:219–222

    Article  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acid: A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Weil R, Vinograd J (1963) The cyclic helix and cyclic coil forms of polyoma viral DNA. Proc Natl Acad Sci USA 50:730

    Article  PubMed  CAS  Google Scholar 

  • Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickersen RE (1980) Crystal structure of a comnlete DNA turn. Nature 287:755

    Article  PubMed  CAS  Google Scholar 

  • Zarling DA, McIntosh LP, Arndt-Jovin DJ, Robert-Nicoud M, Jovin TM (1983) Anti-poly (d(G-Br5C)) IgG interaction with synthetic, viral and cellular Z-DNA. J Biomol Struc Dynam I:1081–1107

    Google Scholar 

  • Zimmermann SB (1982) The three-dimensional structure of DNA. Ann Rev Biochem 51:395–427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nordheim, A. (1985). Linkshelikale Z-DNA: “DNA-Supercoiling” und Bindung von Anti-Z-DNA Antikörpern. In: Blin, N., Trendelenburg, M.F., Schmidt, E.R. (eds) Molekular- und Zellbiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70100-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70100-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13934-8

  • Online ISBN: 978-3-642-70100-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics