Skip to main content

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 9))

Abstract

The primary role of calcium ions as an intermediary in the regulation of excitation-contraction coupling is still accepted. Our present views on the cytoplasmic calcium, the intracellular stores of this ion and its regulation are based on indirect experimental evidence. The dimensions of smooth muscle cells and the complex structure of tissues composed of such cells have only allowed in a few instances to visualize cellular Ca compartments [1]. Recently the changes of cytoplasmic calcium concentration have also been investigated using the bioluminiscent calcium indicator aequorin [2, 3]. The various experimental results obtained in studying smooth muscle cells suggest that these cells have an intracellular store from which calcium can be released and that a maintained contraction depends on a continuous supply of calcium from the external medium [4, 5]. Also the amplitude of these force developments is determined by the external calcium concentration. The cells could be considered as a one-way system with calcium flowing into the cells and being extruded out of the cell. The recycling of calcium between the cytoplasm and the cellular calcium store, as observed in skeletal muscle fibres is probably only poorly developed in smooth muscle. In Ca-free medium a single supramaximal stimulus with an agonist induces only a transient contraction and a second application of the stimulus during a maintained exposure to Ca-free medium is neither accompanied by a second phasic contraction nor by a release of Ca from the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devine CE, Somlyo AV, Somlyo AP (1971) Sarcoplasmic reticulum and excitation-contration coupling in mammalian smooth muscle. J Cell Biol 52:690–715.

    Article  Google Scholar 

  2. Morgan JP, Morgan KG (1982) Vascular smooth muscle: The first recorded Ca2+ transients. Pflugers Arch 395:75–77.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan JP, Morgan KG (1984) Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol 351:155–167.

    PubMed  CAS  Google Scholar 

  4. Droogmans G, Raeymaekers L, Casteels R (1977) Electro-and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J Gen Physiol 70:129–148.

    Article  PubMed  CAS  Google Scholar 

  5. Casteels R, Droogmans G (1981) Exchance characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle of rabbit ear artery. J Physiol 317:263–279.

    PubMed  CAS  Google Scholar 

  6. Casteels R, Droogmans G, Raeymaekers L, Wuytack F (1982) Ca-exchange and transport in vascular smooth muscle cells. In: Yoshida H, Hagihara Y, Ebashi S (eds) Advances in pharmacology and therapeutics II, vol 3. Pergamon Press, Oxford New York, pp 71–79.

    Google Scholar 

  7. Soloff MS, Sweet P (1982) Oxytocin inhibition of (Ca2+ +Mg2+)-ATPase activity in rat myometrial plasma membranes. J Biol Chem 257:10687–10693.

    PubMed  CAS  Google Scholar 

  8. Fleckenstein A, Tritthart H, Doring HJ, Byon YK (1972) Bay a 1040 — ein hochaktiver Ca+ +-antagonischer Inhibitor der elektro-mechanischen Koppelungsprozesse im Warmblu-termyokard. Arzneim Forsch 22:22–33.

    CAS  Google Scholar 

  9. Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:607–718.

    Google Scholar 

  10. van Breemen C, Hwang OK, Meisheri KD (1981) The mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J Pharmacol Exp Ther 218:459–463.

    PubMed  Google Scholar 

  11. Godfraind T (1983) Actions of nifedipine on calcium fluxes and contraction in isolated rat arteries. J Pharmacol Exp Ther 224:443–450.

    PubMed  CAS  Google Scholar 

  12. Casteels R, Login IS (1983) Reserpine has a direct action as a calcium antagonist on mammalian smooth muscle cells. J Physiol 340:403–414.

    PubMed  CAS  Google Scholar 

  13. Ichida S, Moriyama M, Terao M (1984) Characteristics of Ca influxes through voltage-and receptor-operated Ca channels in Uterine smooth muscle. J Pharmacol Exp Ther 228:439–445.

    PubMed  CAS  Google Scholar 

  14. Schramm M, Thomas G, Toward R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537.

    Article  PubMed  CAS  Google Scholar 

  15. Casteels R, Raeymaekers L (1979) The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol 294:51–68.

    PubMed  CAS  Google Scholar 

  16. Himpens B, Droogmans G (1984) Relation between intracellular Na concentration and desensitization in smooth muscle of ileum and taenia coli of the guinea-pig. Arch Int Pharmacol Pharmacodyn (in press).

    Google Scholar 

  17. Grupp G, Grupp IL, Dube GP, Schwartz A (1984) Effects of dihydropyridine Ca2+ agonist Bay K 8644 on porcine coronary artery and isolated rat hearts. Cell Calcium 5:313 (abstract E5).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Missiaen, L., Eggermont, J., Himpens, B., Casteels, R. (1985). Effect of Dihydropyridines on Visceral Smooth Muscle. In: Fleckenstein, A., Van Breemen, C., Gross, R., Hoffmeister, F. (eds) Cardiovascular Effects of Dihydropyridine-Type Calcium Antagonists and Agonists. Bayer-Symposium, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70499-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70499-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70501-4

  • Online ISBN: 978-3-642-70499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics