Skip to main content

Brain Aging in Insects

  • Chapter
Insect Aging

Abstract

The role of the central nervous system (CNS) in the modulation of homeostatic mechanisms and the aging process especially in mammals, has been well investigated by several authors (Blumenthal 1970, Ordy and Brizzee 1975, Hoffmeister and Müller 1979, Samorajski 1980, Buschmann 1982, Hoyer 1982, Frolkis et al. 1984). In insects the crucial role of the CNS in developmental processes is well established; however, it is an open question whether the brain also governs the aging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babers FH, Pratt JJ (1950) Studies on the resistance of insects to insecticides I. Cholinesterase in house flies (Musca domestica) resistant to DDT. Physiol Zool 23:58–63

    PubMed  CAS  Google Scholar 

  • Becker HW (1965) The number of neurons, glial and perineurium cells in an insect ganglion. Experientia 21:719

    Article  Google Scholar 

  • Bieber M, Fuldner D (1979) Brain growth during the adult stage of a holometabolous insect. Naturwissenschaften 66:426

    Article  Google Scholar 

  • Blumenthal HT (1970) The regulatory role of the nervous system in aging. Interdiscip Top Gerontol 7:1

    Google Scholar 

  • Brandt E (1879) Vergleichend-anatomische Untersuchungen des Nervensystems der Käfer (Coleoptera). Horae Soc Entomol Ross 15:31–101

    Google Scholar 

  • Burrows M (1980) Principles of organization of insect central nervous systems. In: Sherwood (ed) Insect neurobiology and pesticide action. Soc Chem Industry, London, p 5

    Google Scholar 

  • Buschmann MBT (1982) Brain structure and its implication in metabolism in aging: a review. Clin Nutr 36:759

    Google Scholar 

  • Cheng EY, Cutkomp LK (1972) Aging in the honeybee Apis mellifera, as related to brain ATPases and their DDT sensitivity. J Insect Physiol 18:2285–2291

    Article  CAS  Google Scholar 

  • Clark AM, Rockstein M (1964) Aging in insects. In: Rockstein M (ed) The physiology of insecta, vol 1. Academic Press, London New York, p 227

    Google Scholar 

  • Clement EM, Strang RHC (1978) A comparison of some aspects of the physiology and metabolism of the nervous system of the locust Schistocerca gregaria in vitro with those in vivo. J Neurochem 31:135–145

    Article  PubMed  CAS  Google Scholar 

  • Collatz K-G, Collatz S (1981) Age dependent ultrastructural changes in different organs of the mecopteran fly, Panorpa vulgaris. Exp Gerontol 26:183–193

    Article  Google Scholar 

  • Collatz K-G, Stammler G, Wilps H, Mehler L (1981) Programmed loss of flight ability in the early adult life of the blowfly Phormia terrae novae as a possible mechanism of intraspecific niche building with respect to the duration of life. Comp Biochem Physiol 68A:571–577

    Article  Google Scholar 

  • Evans PD (1978) Octopamine distribution in the insect nervous system. J Neurochem 30:1009–1013

    Article  CAS  Google Scholar 

  • Farrell S, Kuhlenbeck H (1964) Preliminary computation of the number of cellular elements in some insect brains. Anat Rec 148:369–370

    Google Scholar 

  • Frolkis VV, Tanin SA, Martynenko OA, Bogatskaya LN, Bezrukov VV (1984) Aging of the neurons. Interdiscip Top Gerontol 18:1–28

    Google Scholar 

  • Fyg W (1979) Beitrag zur Kenntnis der Altersveränderungen im Nervensystem und in anderen inneren Organen der Bienenkönigin (Apis mellifera L.). Apidologie 10:115–128

    Article  Google Scholar 

  • Goossen H (1951) Untersuchungen an Gehirnen verschieden großer, jeweils verwandter Coleopteren- und Hymenopterenarten. Zool Jahrb 62:1–64

    Google Scholar 

  • Hansemann D von (1914) Über Alterserscheinungen bei Bazillus rossii Fabr. Sitzungsber Ges Naturforsch Freunde Berlin 1914:187–191

    Google Scholar 

  • Herman MH, Miquel J, Johnson M (1971) Insect brain as a model for the study of aging. Acta Neuropathol 19:167–183

    Article  PubMed  CAS  Google Scholar 

  • Hess A (1955) The fine structure of young and old spinal ganglia. Anat Rec 123:399–424

    Article  PubMed  CAS  Google Scholar 

  • Hodge CF (1894) Changes in ganglion cells from birth to senile death. Observations on man and honey-bee. J Physiol (London) 17:129–134

    Google Scholar 

  • Hoffmeister F, Müller C (1979) Brain function in old age. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hoyer S (1982) The aging brain. Exp Brain Res Suppl 5. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kern M (1982) Das Insekt als Modell für Altersstudien. Altersabhängige Untersuchungen zum Gehirnstoffwechsel von Calliphora erythrocephala und Bombyx mori. Thesis, Johannes Gutenberg-Univ, Mainz

    Google Scholar 

  • Kern M (1984) Relation of insect life span to body weight and energy metabolism and the problem of brain weight, metabolic rate, and life span. VXII Int Congr Entomol, Hamburg

    Google Scholar 

  • Kern M (1985a) Metabolic rate of the insect brain in relation to body size and phylogeny. Comp Biochem Physiol 81(A): 501–506

    Article  Google Scholar 

  • Kern M (1985b) Utilization of glucose and proline in the brain of adult insects. Insect Biochem (in press)

    Google Scholar 

  • Kern M, Wegener G (1980) Age dependent changes in the metabolism of insect brains. 13th Meet Eur Biochem Soc, Jerusalem

    Google Scholar 

  • Kern M, Wegener G (1982) The cerebral ganglion of insects. A model for the metabolic aspects of brain aging. 10th Aharon Katzir-Katchalsky Conf Ageing Brain, Mantua, Italy

    Google Scholar 

  • Kern M, Wegener G (1984) Age affects the metabolic rate of insect brain. Mech Ageing Dev 28:237–242

    Article  PubMed  CAS  Google Scholar 

  • Lamb MJ (1978) Ageing. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2c. Academic Press, London New York, p 43

    Google Scholar 

  • Lampareter HE, Akert K, Sandri C (1967) Wallersche Degeneration im Zentralnervensystem der Ameise. Elektronenmikroskopische Untersuchungen am Prothorakalganglion von Formia lugubris Zett. Schweiz Arch Neurobiol Neurochir Psychiatrie 100:337–354

    Google Scholar 

  • Lucht-Bertram E (1962) Degenerative Erscheinungen am Gehirn alternder Bienen-Königinnen (Apis melhfera L.). Z Bienenforsch 6:169–172

    Google Scholar 

  • Maurizio A (1959) Factors influencing the life span of bees. In: Wolstenholme GEW, O’Connor M (eds) CIBA Found Coll Ageing, vol 5. Churchill, London, p 231

    Google Scholar 

  • Meyer G (1955) Altersveränderungen an Nervenzellen sozialer Insekten. Mikrokosmos 44:209–211

    Google Scholar 

  • Miquel J (1971) Aging of male Drosophlia melanogaster. histological, histochemical, and ultra-structural observations. In: Strehler BL (ed) Adv Gerontol Res, vol 3. Academic Press, London New York, p 39

    Google Scholar 

  • Miquel J, Economos AC, Bensch KG, Atlan H, Johnson JE (1979) Review of cell aging in Drosophlia and mouse. Age 2:78–88

    Article  Google Scholar 

  • Miquel J, Binnard R, Fleming JE (1983) Role of metabolic rate and DNA-repair in Drosophlia aging: Implications for the mitochondrial mutation theory of aging. Exp Gerontol 18:167–171

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt HHJ (1941) A comparative morphological study of the nervous system of the orthoptera and related orders. Ann Entomol Soc Am 34:51–81

    Google Scholar 

  • Ordy JM, Brizzee KR (1975) Neurobiology of aging. Plenum Press, New York London

    Google Scholar 

  • Panno JP, Nair KK (1984) Chromatin condensation in the aging housefly. Exp Gerontol 19:63–72

    Article  PubMed  CAS  Google Scholar 

  • Pichon Y, Satelle DB, Lane NJ (1972) Conduction processes in the nerve cord of the moth Manduca sexta in relation to its ultrastructure and haemolymph ionic composition. J Exp Biol 56:717–736

    PubMed  CAS  Google Scholar 

  • Pixell-Goodrich HLM (1920) Determination of age in honeybees Q J Microsc Sci 64:191–205

    Google Scholar 

  • Rivera ME, Langer H (1978) Effect of light on ATPases in eyes and brain of the blowfly, Calliphora. J Comp Physiol 123:245–251

    Article  CAS  Google Scholar 

  • Rockstein M (1950) The relation of Cholinesterase activity to change in cell number with age in the brain of the adult honeybee. J Cell Comp Physiol 35:11–24

    Article  CAS  Google Scholar 

  • Rockstein M (1959) The biology of ageing in insects. In: Wolstenholme GEW, O’Connor M (eds) CIBA Found Coll Ageing, vol 5. Churchill, London, p 247

    Google Scholar 

  • Rockstein M (1967) Cellular age changes in insects. Symposia of the society of experimental biology XXI. Aspects of the biology of ageing. Academic Press, London New York, p 337

    Google Scholar 

  • Rockstein M, Miquel J (1973) Aging in insects. In: Rockstein M (ed) The physiology of insecta, vol 1. Academic Press, London New York

    Google Scholar 

  • Rockstein M, Gray FH, Berberian PA (1971) Time-correlated neurosecretory changes in the house fly, Musca domestica L. Exp Gerontol 6:211–217

    Article  PubMed  CAS  Google Scholar 

  • Samorajski T (1980) Neurochemical changes in the aging human and nonhuman primate brain. In: Eisdorfer C, Fann WE (eds) Psychopharmacology of aging. Spectrum Publ, p 145

    Google Scholar 

  • Sbrenna G (1971) Postembryonic growth of the ventral nerve cord in Schistocerca gregaria Forsk. (Orthoptera: Acrididae). Boll Zool 38:49–74

    Article  Google Scholar 

  • Schmidt H (1923)Über den Alterstod der Biene. Z Naturwiss 29:343–362

    Google Scholar 

  • Schofield PK, Treherne JE (1975) Sodium transport and lithium movements across the insect blood-brain barrier. Nature (London) 225:723–725

    Article  Google Scholar 

  • Sharma PK; Bahadur J (1982) Age-related changes in the total protein in the brain of Periplaneta americana (L.). Mech Ageing Dev 20:49–52

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Singh YN (1981) Histological changes in the brain of Hypsa alciforon (Lepidoptera: Hypsidae) during metamorphosis. Z Mikrosk-Anat Forsch Leipzig 95:667–683

    CAS  Google Scholar 

  • Singh YN, Singh M (1980) Structure and metamorphic changes in the brain of the flesh fly Sarcophaga ruficornis Fabr. (Diptera: Sarcophagidae). J Hirnforsch 21:187–197

    PubMed  CAS  Google Scholar 

  • Smallwood WM, Phillips RL (1916) Nuclear size in the nerve cells of the bee during the life cycle. J Comp Neurol 27:69–75

    Article  Google Scholar 

  • Sohal RS (1981) Metabolic rate, aging and lipofuscin accumulation. In: Sohal RS (ed) Age pigments. Elsevier, North-Holland, Amsterdam, p 303

    Google Scholar 

  • Sohal RS (1985) Aging in insects. In: Gilbert LI (ed) Comprehensive insect physiology, biochemistry and pharmacology, vol 10. Pergamon Press, Oxford, p 595

    Google Scholar 

  • Sohal RS, Allison VF (1971) Age-related changes in the fine structure of the flight muscle of the housefly. Exp Gerontol 6:167–172

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Sharma SP (1972) Age-related changes in the fine structure and number of neurons in the brain of the housefly, Musca domestica. Exp Gerontol 7:243–249

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Sharma SP, Couch EF (1972) Fine structure of the neural sheath, glia and neurons in the brain of the housefly, Musca domestica. Z Zellforsch 135:449–459

    Article  PubMed  CAS  Google Scholar 

  • Stark WS, Carlson SD (1982) Ultrastructural pathology of the compound eye and optic neuropiles of the retinal degeneration mutant (w rdg BKS 222) Drosophila melanogaster. Cell Tissue Res 225:11–22

    Article  PubMed  CAS  Google Scholar 

  • Stocker RF, Edwards JS, Truman JW (1978) Fine structure of degenerating abdominal motor neurons after eclosion in the sphingid moth, Manduca sexta. Cell Tissue Res 191:317–331

    Article  PubMed  CAS  Google Scholar 

  • Stoffolano JG (1976) Insects as model systems for aging studies. In: Elias MF (ed) Special review of experimental aging research. EAR, Bar Habor, Maine, p 407

    Google Scholar 

  • Strang RHC (1981) Energy metabolism in the insect nervous system. In: Downer RGH (ed) Energy metabolism in insects. Plenum Press, New York London, p 169

    Google Scholar 

  • Thomsen M (1965) The neurosecretory system of adult Calliphora erythrocephala. Z Zellforsch 67:693–717

    Article  Google Scholar 

  • Treherne JE, Pichon Y (1972) The insect blood-brain barrier. Adv Insect Physiol 9:257–313

    Article  CAS  Google Scholar 

  • Treherne JE, Schofield PK (1979) Ionic homeostasis of the brain microenvironment in insects. TINS 2:227–230

    Google Scholar 

  • Truman JW (1983) Programmed cell death in the nervous system of an adult insect. J Comp Neurol 216:445–452

    Article  PubMed  CAS  Google Scholar 

  • Webb S, Tribe MA (1974) Are there major degenerative changes in the flight muscle of ageing diptera? Exp Gerontol 9:43–49

    Article  PubMed  CAS  Google Scholar 

  • Wegener G (1981) Comparative aspects of energy metabolism in nonmammalian brains under normoxic and hypoxic conditions. In: Stefanovich V, Kriegelstein J (eds) Animal models and hypoxia. Pergamon Press, Oxford, p 87

    Google Scholar 

  • Weidner H (1982) Morphologie, Anatomie und Histologie. In: Helmcke J-G, Starck D, Wermuth H (eds) Arthropoda/Insecta. Handbuch der Zoologie, Bd 4(2) 1/11. de Gruyter, Berlin New York, p 1

    Google Scholar 

  • Weyer F (1932) Cytologische Untersuchungen am Gehirn alternder Bienen und die Frage nach dem Alterstod. Z Zellforsch Mikrosk Anat 14:1–54

    Article  Google Scholar 

  • Wigglesworth VB (1960) The nutrition of the central nervous system in the cockroach Periplaneta americana L. The role of perineurium and glial cells in the mobilization of reserves. J Exp Biol 37:500–512

    CAS  Google Scholar 

  • Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morphol Tiere 61:160–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kern, M.J. (1986). Brain Aging in Insects. In: Collatz, KG., Sohal, R.S. (eds) Insect Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70853-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70853-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70855-8

  • Online ISBN: 978-3-642-70853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics